Manipulation Under Anesthesia Policy Number: CS075.R Effective Date: July 1, 2023 Instructions for Use | Table of Contents | Page | |-------------------------------------|------| | Application | 1 | | Coverage Rationale | | | <u>Definitions</u> | | | Applicable Codes | | | Description of Services | | | Clinical Evidence | | | U.S. Food and Drug Administration | | | References | | | Policy History/Revision Information | | | Instructions for Use | | | | | #### **Related Community Plan Policies** - Manipulative Therapy - Outpatient Surgical Procedures Site of Service #### **Commercial Policy** Manipulation Under Anesthesia #### **Medicare Advantage Coverage Summary** Orthopedic Procedures, Devices and Products # **Application** This Medical Policy does not apply to the states listed below; refer to the state-specific policy/guideline, if noted: | State | Policy/Guideline | |--------------|-------------------------------------------------------| | Indiana | None | | Kentucky | Manipulation Under Anesthesia (for Kentucky Only) | | Louisiana | Manipulation Under Anesthesia (for Louisiana Only) | | New Jersey | Manipulation Under Anesthesia (for New Jersey Only) | | Ohio | Manipulation Under Anesthesia (for Ohio Only) | | Pennsylvania | Manipulation Under Anesthesia (for Pennsylvania Only) | | Tennessee | Manipulation Under Anesthesia (for Tennessee Only) | # **Coverage Rationale** Manipulation under anesthesia (MUA) is proven and medically necessary for: - Knee joint for Arthrofibrosis following total knee arthroplasty, knee surgery, or fracture - Shoulder joint for adhesive capsulitis (frozen shoulder) when certain criteria are met. For medical necessity clinical coverage criteria, refer to the InterQual® CP: Procedures, Manipulation Under Anesthesia, Shoulder. Click here to view the InterQual® criteria. MUA is unproven and not medically necessary for all other conditions (whether for single or serial manipulations) including but not limited to the following, due to insufficient evidence of efficacy: - Ankle - Finger - Hip joint or adhesive capsulitis of the hip Manipulation Under Anesthesia UnitedHealthcare Community Plan Medical Policy - Knee joint any condition other than for Arthrofibrosis following total knee arthroplasty, knee surgery, or fracture - Pelvis - Spine - Temporomandibular joint (TMJ) - Toe - Wrist This policy does not apply to the following: - Manipulation of the finger on the day following the injection of collagenase clostridium histolyticum (Xiaflex[®]) to treat Dupuytren's contracture - Closed reduction of a fracture or joint dislocation unless specified - Elbow joint for Arthrofibrosis following elbow surgery or fracture ### **Definitions** **Arthrofibrosis**: A complication of injury or trauma where an excessive scar tissue response leads to painful restriction of joint motion, with scar tissue forming within the joint and surrounding soft tissue spaces and persisting despite rehabilitation exercises and stretches. (International Pain Foundation). ### **Applicable Codes** The following list(s) of procedure and/or diagnosis codes is provided for reference purposes only and may not be all inclusive. Listing of a code in this policy does not imply that the service described by the code is a covered or non-covered health service. Benefit coverage for health services is determined by federal, state, or contractual requirements and applicable laws that may require coverage for a specific service. The inclusion of a code does not imply any right to reimbursement or guarantee claim payment. Other Policies and Guidelines may apply. | CPT Code | Description | |----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 21073 | Manipulation of temporomandibular joint(s) (TMJ), therapeutic, requiring an anesthesia service (i.e., general or monitored anesthesia care) | | 22505 | Manipulation of spine requiring anesthesia, any region | | 23700 | Manipulation under anesthesia, shoulder joint, including application of fixation apparatus (dislocation excluded) | | 25259 | Manipulation, wrist, under anesthesia | | 26340 | Manipulation, finger joint, under anesthesia, each joint | | 27198 | Closed treatment of posterior pelvic ring fracture(s), dislocation(s), diastasis or subluxation of the ilium, sacroiliac joint, and/or sacrum, with or without anterior pelvic ring fracture(s) and/or dislocation(s) of the pubic symphysis and/or superior/inferior rami, unilateral or bilateral; with manipulation, requiring more than local anesthesia (i.e., general anesthesia, moderate sedation, spinal/epidural) | | 27275 | Manipulation, hip joint, requiring general anesthesia | | 27570 | Manipulation of knee joint under general anesthesia (includes application of traction or other fixation devices) | | 27860 | Manipulation of ankle under general anesthesia (includes application of traction or another fixation apparatus) | CPT° is a registered trademark of the American Medical Association | HCPCS Code | Description | |------------|-------------------------------| | D7830 | Manipulation under anesthesia | | Diagnosis Code | Description | |----------------|---------------------------------------------| | Knee | | | M24.661 | Ankylosis, right knee | | M24.662 | Ankylosis, left knee | | M24.669 | Ankylosis, unspecified knee | | Shoulder | | | M24.611 | Ankylosis, right shoulder | | M24.612 | Ankylosis, left shoulder | | M24.619 | Ankylosis, unspecified shoulder | | M75.00 | Adhesive capsulitis of unspecified shoulder | | M75.01 | Adhesive capsulitis of right shoulder | | M75.02 | Adhesive capsulitis of left shoulder | ### **Description of Services** Manipulation under anesthesia (MUA) is a non-invasive procedure which combines manual manipulation of a joint or the spine with an anesthetic. Individuals who are unable to tolerate manual procedures due to pain, spasm, muscle contractures, or guarding may benefit from the use of an anesthetic agent prior to manipulation. Anesthetics may include intravenous general anesthesia or mild sedation, injection of an anesthetic to the affected area, oral medication such as muscle relaxants, inhaled anesthetics, or any other type of anesthetic medication therapy. Because the patient's protective reflex mechanism is, absent under anesthesia, manipulation using a combination of specific short lever manipulations, passive stretches, and specific articular and postural kinesthetic maneuvers to break up fibrous adhesions and scar tissue around the joint and surrounding tissue is made less difficult. Manipulation procedures can be performed under either: general anesthesia, mild sedation, or local injection of an anesthetic agent to the affected area (Reid, 2002). Spinal manipulation under anesthesia (SMUA) consists of spinal manipulation and stretching procedures performed on the patient after an anesthetic is administered (e.g., mild sedation, general anesthesia). This is typically performed by chiropractors, osteopathic physicians, and orthopedic physicians along with an anesthesiologist. Theoretically, SMUA is thought to stretch the joint capsules to break up adhesions within the spinal column to allow for greater mobility and reduced back pain; however, this has not been proven to be safe or effective in the peer-reviewed literature. ### **Clinical Evidence** #### **Knee** Haffar et al. (2022) conducted a systematic review comparing outcomes of MUA, arthroscopic lysis of adhesions (aLOA), and revision total knee arthroplasty (rTKA) for treatment of arthrofibrosis and stiffness after TKA. The primary endpoint was patient-reported outcome measures (PROMs) and secondary outcomes were range of motion (ROM) and percentage of patients who pursued further treatment for stiffness. There were 40 studies included in the review 17 of which applied to MUA. For MUA, the authors noted an average ROM increase of 20.97° post-operatively. The authors also noted that all studies that reported pre-operative and post-operative Knee Society (KSS) clinical and functional scores showed improvement at final follow-up following MUA. Additionally, only 17% of MUA patients required further care. Limitations included poor quality of evidence for the majority of studies included in this review. Lim et al (2021) conducted a study that evaluated the effect of manipulation under anesthesia (MUA) outcomes using clinical outcomes regarding range of motion (ROM) and patient satisfaction following total knee arthroplasty (TKA). This is a retrospective study of 97 patients post bilateral primary TKA. The study shows postoperative flexion was significantly greater in the MUA group at the 6 months follow up, and at the 2 year follow up. Additionally, at the 12 months follow up patient satisfaction scores were substantially higher in the MUA group. The authors concluded MUA improves clinical outcomes such as ROM and patient satisfaction after primary TKA. Randsborg et al. [2020, included in Haffar (2022) systematic review above] evaluated a case series of participants that experienced MUA for knee stiffness following a TKA. 24 patients met the inclusion criteria; MUA was performed following a TKA, along with 2-3 days of continuous passive motion therapy and enhanced physiotherapy with home exercises upon discharge. The authors concluded the study supported previous findings that MUA for knee joint stiffness following a TKA improves ROM both in the short and long term. Limitations included small sample size, no comparison to a comparison group undergoing a different treatment or no treatment and retrospective design. Gu et al. (2018) conducted a systematic review of the efficacy of MUA for stiffness following TKA. Twenty-two studies (1,488 patients) reported on ROM after MUA, and 4 studies (81 patients) reported ROM after repeat MUA. However, none of the studies appeared to include a comparison group without MUA, limiting the conclusions that can be drawn. All studies reported pre-MUA motion of less than 90°, while mean ROM at last follow-up exceeded 90° in all studies except 2. For studies reporting ROM improvement following repeat MUA, the mean pre-manipulation ROM was 80° and the mean post-manipulation ROM was 100.6°. The authors concluded that MUA remains an efficacious, minimally invasive treatment option for post-operative stiffness following TKA and provides clinically significant improvement in ROM for most patients, with the best outcomes occurring in patients treated within 12 weeks post-operatively. The quality of studies, variability of inclusion criteria and methods for reporting the data, the lack of comparison groups and variability in the physical therapy (PT) regimens were just a few limitations identified in this systematic review. Additional research is expected to provide clarity regarding timing of MUA interventions and post-procedure PT protocol. Fabricant et al. (2018) evaluated (not included in the Gu, et al. systematic review) in a case series ninety patients aged 18 years and younger who underwent lysis of adhesions (LOA) and MUA at an urban tertiary care hospital following prior knee surgery. The primary purpose of this study was to report improvements in ROM following LOA/MUA in children and adolescents with knee arthrofibrosis, and, secondarily, to evaluate for any effect of preoperative dynamic splinting on ROM outcomes. Demographic, clinical, ROM, and revision data were all compiled. Mean time from index surgery to LOA/MUA was 6.0 ±4.4 months, and follow-up was 42 ±56 months. The authors found 62% of the participants had full ROM at follow up, and 25% had functional ROM. It was concluded that LOA/MUA for children with arthrofibrosis in the knees results in significant improvements in ROM with 90% revision-free success. Limitations of the study included lack of comparison group and small sample size. A matched case control study (excluded from the Gu, et al. systematic review, but included in the Haffar et al. (2022) systematic review) was conducted by Pierce et al. (2017) to assess the incidence of revision TKA among patients who underwent or did not undergo MUA after initial TKA. A prospectively collected database of two high-volume institutions was assessed for patients who required a single MUA following TKA between 2005 and 2011. The study included 138 knees with a mean 8.5-year follow-up post-MUA. This was compared with a matched cohort (1:1) who underwent TKA during the same time but did not require an MUA. Incidence of revision surgery and clinical outcomes were compared between the two cohorts. Nine knees underwent revision in the MUA cohort, and seven revisions were performed in the matched cohort. The mean Knee Society Score (KSS) and clinical scores were similar between the two cohorts. The authors concluded that undergoing an MUA was not associated with an increased risk of revision TKA. However, patients requiring MUA after an initial TKA may have been different from those not requiring MUA, limiting the conclusions that can be derived from this study. Sassoon et al. (2015) performed a retrospective review on a case series of 22 patients (not included in the Gu, et al. systematic review) to evaluate whether closed manipulations performed under anesthesia were an effective means to treat post-traumatic knee arthrofibrosis. Injuries included fractures of the femur, tibia, and patella as well as ligamentous injuries and traumatic arthrotomies. The mean time from treatment to manipulation was 90 days and a mean follow-up after manipulation was 7 months. The authors found improvement of ROM for the knee was the primary outcome. It was concluded MUA is a safe and effective method to increase knee ROM in the setting of posttraumatic arthrofibrosis. Limitations of the study included lack of comparison group and small sample size. Fitzsimmons et al. (2010) conducted a systematic review to outcomes between studies that used either MUA arthroscopy with or without MUA, or open arthrolysis for knee stiffness following TKA. The review evaluated 23 studies. MUA alone resulted in a mean gain in knee motion of 30 to 47 degrees. Range of motion in the arthroscopy group increased between 18.5 to 60 degrees. The open arthrolysis group had less gain in range of motion with gains between 19 and 31 degrees. The authors concluded that both MUA and arthroscopy provide similar gains in range of motion for patients with knee stiffness following total knee arthroplasty. Open arthrolysis had less favorable results. While this review compared outcome between treatments, all comparisons were indirect, as each included study used one of the approaches only. #### **Spine** The available evidence for manipulation under anesthesia for the spine is insufficient to consider the procedure proven to be effective and safe. Taber et al. (2014) performed a retrospective chart review of 18 cases treated MUA for lumbopelvic pain at an outpatient ambulatory surgical center. Patients with pre- and post-intervention Oswestry Low Back Pain Disability Index (ODI) scores were included along with patients having lumbopelvic and hip complaints. ODI scores were assessed within one week prior to MUA and again two weeks after the procedure. The participants underwent two to four chiropractic MUA procedures over the course of a week per the National Academy of Manipulation Under Anesthesia physicians' protocols. Preprocedural ODI scores ranged from 38 to 76; postprocedural scores range from 0 to 66. For each patient, the ODI scores were lower with average decrease of 20.6. The authors identified sixteen of the eighteen patients experienced meaningful improvement of their pain. Limitations of the study included small study size, no control group, potential bias, and insufficient data on long-term safety. The authors suggested future large scale, carefully controlled prospective studies be performed. Methodological limitations of studies reported in a narrative review (DiGiorgio, 2013) of the literature investigating spinal manipulation under anesthesia (SMUA) concluded that, "the evidence of treatment efficacy [SMUA] remains limited, with published studies that are generally weak in their methodological quality and consistently varied across multiple domains which do not permit comparative analysis toward generalization." Similarly, a review (Dagenais, et al, 2008) of medication-assisted manipulation for patients having chronic low back pain reported, "there is insufficient research to guide clinicians, policy makers, and especially patients' decision whether to consider this treatment [spinal medication-assisted manipulation] approach." MUA for low back pain has been used for many years however there is insufficient evidence in the published literature to support the long-term safety and efficacy of its use. In a prospective study of 68 patients with chronic low-back pain, Kohlbeck et al. (2005) compared changes in pain and disability for chronic low-back pain patients receiving treatment with medication-assisted manipulation (MAM) to patients receiving spinal manipulation only. All patients received an initial 4- to 6-week trial of spinal manipulation therapy (SMT), after which 42 patients received supplemental intervention with MAM and the remaining 26 patients continued with SMT. Low back pain and disability measures favored the MAM group over the SMT-only group at 3 months. The authors concluded that medication-assisted manipulation appears to offer some patients increased improvement in low back pain and disability; however, the study is limited by lack of randomization, small sample size, insufficient data on long-term safety, and significant baseline differences between groups for the primary outcome variable (pain/disability scale). In a prospective controlled study by Palmieri and Smoyak (2002), 87 patients who received either SMUA or traditional chiropractic treatment for low back pain were evaluated. The participants were assigned to one of two groups: 38 to an intervention group who received SMUA and 49 patients to a nonintervention group who received traditional chiropractic treatment. Patients were followed for 4 weeks. Self-reported outcomes, including back pain severity and functional status, were used to evaluate changes. The SMUA group had an average decrease of 50% in the Numeric Pain Scale scores while the nonintervention group had a 26% decrease. The SMUA group had an average decrease of 51% in the Roland-Morris Questionnaire scores while the nonintervention group had a 38% decrease. The authors concluded that while there was greater improvement in the intervention group, additional studies are needed to evaluate the safety and effectiveness of MUA. This study has a high risk of bias due to the methods used to select subjects, lack of assessor blinding, failure to isolate the effects of the active intervention, and interpretation of outcomes. Subjects were selected largely based upon 2 criteria: meeting NAMUAP eligibility requirements and having insurance coverage for SMUA. This led to significant baseline heterogeneities between intervention and control groups. Sample size (n = 87; SMUA group = 38; SMT group = 49) did not reach anticipated number of participants. The attempt to measure the difference in treatment effect between SMUA and SMT was confounded by the addition of a specific exercise protocol for the SMUA group vs. an undefined "home exercise" program for the SMT group. Follow-up period was limited and therefore insufficient data on long-term safety are available. Problems with obtaining timely follow-up data were reported. The use of a percentile difference in outcome scores between groups does not consider if each outcome of interest exhibited a clinically meaningful difference between each group. In fact, there were no statistical or clinically meaningful differences between groups. There was a difference of 1.52 points on the NRS at initial follow-up and 1.32 points difference at final follow-up (the minimal clinically important change has been widely reported as 2 points). The difference at initial follow-up for the RMDQ was 2.2 points and at final follow-up was 1 point (as noted in the study, a 4-point difference is necessary for it to be clinically meaningful). #### Temporomandibular Joint (TMJ) TMJ may spontaneously resolve or reoccur or respond to warm compresses, non-steroidal anti-inflammatory drugs (NSAIDs) splint therapy or physical therapy. However, the available evidence for manipulation under anesthesia for temporomandibular joint syndrome is limited to small, uncontrolled studies with limited follow-up. Foster et al. (2000) studied 55 patients receiving manipulation under general anesthesia of the temporomandibular joint to determine the success rate of MUA effectiveness to reduce the number of patients being referred for invasive surgery. Of the 55 patients participating in this study, 15 improved, 15 did not, 6 showed partial improvement and 19 were not treated. The median pre-treatment opening was 20 mm (range 13-27). Among those who improved after manipulation, the median opening after treatment was 38 mm (range 35-56). The authors concluded that MUA may help some patients; however, some of those who improved experienced a return of TMJ clicking but not of joint or muscle tenderness. Furthermore, this study is limited by lack of comparison group. #### Toe The available evidence for manipulation under anesthesia for a toe is insufficient to consider the procedure proven to be effective and safe. Ajwani et al. (2018) assessed 35 patients that had undergone first metatarsophalangeal joint (MTPJ) surgery to determine the effectiveness of MUA and steroid injection to treat joint stiffness. Documentation of ROM measurements and radiographs were reviewed. A mixture of depomedrone and bupivacaine were used for the steroid injection. Following MUA, the participants were given the Manchester–Oxford foot questionnaire (MOXFQ) to complete for assessment of their level of joint pain. The mean premanipulation total range of movement at the first MTPJ was 25° (range 5–100), immediate post-manipulation ROM was 70° (10–180), and final follow-up ROM was 50° (10–90). The average post-operative MOXFQ score was 25.2 (out of 52). The authors concluded joint ROM significantly improved after manipulation by a mean of 44.7 degrees. Limitations included small sample size, retrospective in nature and lack of randomization with no control or comparative groups. Feuerstein et al. (2016) performed a medical records review study (n - 38) to investigate the intermediate and long-term outcomes of first MTP joint manipulation for arthrofibrosis that developed, specifically, as a complication of hallux valgus surgery. Medical records were reviewed at the Weil Foot and Ankle Institute, IL to identify those patients who had undergone first MTP joint manipulation under anesthesia. Before the patient's visit, the medical records were reviewed to assess the course and timing of the procedures, visual analog scale (VAS) score before manipulation and ROM of the first MTP joint after hallux valgus correction and before manipulation and first MTP joint ROM immediately after manipulation. Manipulation procedures occurred at a mean 1.2 years from the date of the initial hallux valgus correction. The research visits occurred at a mean 6.5 years after the first MTP joint manipulation. Before manipulation, the patients had a mean VAS score of 6.5. At the research visit, the mean VAS score was 2.3. The authors concluded that joint motion was significantly improved in the direction of dorsiflexion and plantar flexion from before manipulation to both immediately after manipulation and at the final follow-up visit. They stated that the study demonstrated that joint manipulation under anesthesia could be a useful treatment modality to increase mobility and decrease pain in the patient. The limitations of the study include the lack of randomization, lack of a control or comparison group, and potential selection bias. #### **Other** Clinical evidence was not identified regarding manipulation under anesthesia for treating any condition (for single or serial manipulations) related to the following: - Ankle - Finger - Hip - Pelvis - Wrist #### Clinical Practice Guidelines #### American College of Occupational and Environmental Medicine (ACOEM) In a recommendation regarding MUA, the ACOEM (2020) concludes MUA, and medication-assisted spinal manipulation (MASM) are not recommended due to lack of quality studies that solely evaluate MUA or MASM for treatment of acute, subacute, or chronic lower back pain (Hegmann et al., 2020). In a recommendation regarding MUA, the ACOEM (2016) has concluded that MUA and medication-assisted spinal manipulations are not recommended due to insufficient evidence of safety and effectiveness for acute, subacute, and chronic cervicothoracic pain. ## U.S. Food and Drug Administration (FDA) This section is to be used for informational purposes only. FDA approval alone is not a basis for coverage. Manipulation is a procedure and therefore not subject to FDA regulation. ### References Ajwani S, Kocialkowski C, Hill R, et al. Manipulation under anesthesia and steroid injection for pain and stiffness after surgery to the first metatarsophalangeal joint. Foot (Edinb). 2018 Mar;34:36-39. American College of Occupational and Environmental Medicine (ACOEM). Cervical and thoracic spine disorders guideline. Reed Group, Medical Disability Advisor, MDGuidelines. 2016. Available at: https://www.dir.ca.gov/dwc/MTUS/ACOEM-Guidelines/Cervical-and-Thoracic-Spine-Disorders-Guideline.pdf. Accessed October 25, 2022. Dagenais S, Mayer J, Wooley JR, et al. Evidence-informed management of chronic low back pain with medicine-assisted manipulation. Spine J 2008;8(1):142–149. Fabricant PD, Tepolt FA, Kocher MS. Range of motion improvement following surgical management of knee arthrofibrosis in children and adolescents. J Pediatr Orthop. 2018 Oct;38(9):e495-e500. Feuerstein C, Weil Jr. L, Weil Sr. L, et al. Joint manipulation under anesthesia for arthrofibrosis after hallux valgus surgery. J Foot Ankle Surg. 2016 Jan-Feb;55(1):76-80. Fitzsimmons SE, Vazquez EA, Bronson MJ. How to treat the stiff total knee arthroplasty: a systematic review. Clin Orthop Relat Res. 2010 Apr;468(4):1096-106. Foster ME, Gray RJ, Davies SJ, et al. Therapeutic manipulation of the temporomandibular joint. Br J Oral Maxillofac Surg. 2000;38(6):641-644. Gu A, Michalak AJ, Cohen J, et al. Efficacy of manipulation under anesthesia for stiffness following total knee arthroplasty: a systematic review. J Arthroplasty. 2018 May;33(5):1598-1605. Haffar A, Goh GS, Fillingham YA, et al. Treatment of arthrofibrosis and stiffness after total knee arthroplasty: an updated review of the literature. Int Orthop. 2022 Jun;46(6):1253-1279. Hegmann KT, Travis R, Andersson GBJ, Belcourt RM, Carragee EJ, Donelson R, Eskay-Auerbach M, Galper J, Goertz M, Haldeman S, Hooper PD, Lessenger JE, Mayer T, Mueller KL, Murphy DR, Tellin WG, Thiese MS, Weiss MS, Harris JS. Non-Invasive and Minimally Invasive Management of Low Back Disorders. J Occup Environ Med. 2020 Mar;62(3):e111-e138. International Pain Foundation. Available at: https://internationalpain.org/arthrofibrosis/. Accessed October 25, 2022. Kohlbeck FJ, Haldeman S, Hurwitz EL, et al. Supplemental care with medication-assisted manipulation versus spinal manipulation therapy alone for patients with chronic low back pain. J Manipulative Physiol Ther. 2005 May;28(4):245-52. Lim JW, Park YB, Lee DH, et al. Effect of manipulation under anesthesia of the first knee in staged bilateral total knee arthroplasty on clinical outcome and satisfaction. j knee surg. 2021 Nov;34(13):1429-1435. Palmieri NF. Smoyak S. Chronic low back pain: a study of the effects of manipulation under anesthesia. J Manipulative Physiol Ther. 2002 Oct;25(8):E8-E17. Pierce TP, Issa K, Festa A. Does manipulation under anesthesia increase the risk of revision total knee arthroplasty? A matched case control study. J Knee Surg. 2017 Sep;30(7):730-733. Randsborg PH, Tajet J, Negård H, et al. Manipulation under anesthesia for stiffness of the knee joint after total knee replacement. Arthroplast Today. 2020 Jun 28;6(3):470-474. Reid R, Desimone R. Manipulation under anesthesia for pain. Spine-health.com. October 23, 2002. Sassoon AA, Adigweme OO, Langford J, et al. Manipulation under anesthesia: a safe and effective treatment for posttraumatic arthrofibrosis of the knee. J Orthop Trauma. 2015 Dec;29(12):e464-8. Taber DJ, James GD, Jacon A. Manipulation under anesthesia for lumbopelvic pain: a retrospective review of 18 cases. J Chiropr Med. 2014 Mar;13(1):28-34. ### **Policy History/Revision Information** | Date | Summary of Changes | |------------|---------------------------------------------------------------------------------------------------------------------| | 07/01/2023 | Supporting Information | | | Updated Description of Services, Clinical Evidence, and References sections to reflect the most current information | | | Archived previous policy version CS075.Q | ### **Instructions for Use** This Medical Policy provides assistance in interpreting UnitedHealthcare standard benefit plans. When deciding coverage, the federal, state or contractual requirements for benefit plan coverage must be referenced as the terms of the federal, state or contractual requirements for benefit plan coverage may differ from the standard benefit plan. In the event of a conflict, the federal, state or contractual requirements for benefit plan coverage govern. Before using this policy, please check the federal, state or contractual requirements for benefit plan coverage. UnitedHealthcare reserves the right to modify its Policies and Guidelines as necessary. This Medical Policy is provided for informational purposes. It does not constitute medical advice. UnitedHealthcare may also use tools developed by third parties, such as the InterQual® criteria, to assist us in administering health benefits. The UnitedHealthcare Medical Policies are intended to be used in connection with the independent professional medical judgment of a qualified health care provider and do not constitute the practice of medicine or medical advice.