EMBOLIZATION OF THE OVARIAN AND ILIAC VEINS FOR PELVIC CONGESTION SYNDROME

Policy Number: 2019T05741 Effective Date: April 1, 2019

Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>COVERAGE RATIONALE</td>
<td>1</td>
</tr>
<tr>
<td>DEFINITIONS</td>
<td>1</td>
</tr>
<tr>
<td>APPLICABLE CODES</td>
<td>1</td>
</tr>
<tr>
<td>DESCRIPTION OF SERVICES</td>
<td>2</td>
</tr>
<tr>
<td>CLINICAL EVIDENCE</td>
<td>2</td>
</tr>
<tr>
<td>U.S. FOOD AND DRUG ADMINISTRATION</td>
<td>4</td>
</tr>
<tr>
<td>CENTERS FOR MEDICARE AND MEDICAID SERVICES</td>
<td>4</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>4</td>
</tr>
<tr>
<td>POLICY HISTORY/REVISION INFORMATION</td>
<td>5</td>
</tr>
<tr>
<td>INSTRUCTIONS FOR USE</td>
<td>5</td>
</tr>
</tbody>
</table>

Coverage Rationale

Embolization of the Ovarian Vein or Internal Iliac Vein is unproven and not medically necessary for treating Pelvic Congestion Syndrome due to insufficient evidence of efficacy.

Definitions

Embolization: A procedure that allows for the blockage of blood flow in targeted blood vessels using clotting or sclerosing agents, such as coils, gel, or foam, applied directly to an area that is bleeding.

Fluoroscopy: A radiological imaging technique that converts real-time X-rays from an X-ray machine into video images, usual for guiding diagnostic and interventional procedures.

Internal Iliac Vein (Hypogastric Vein): Veins that originate deep in the pelvic region and extend to the lower portion of the abdomen, where they are joined with the right and left iliac veins, that together form the common iliac veins.

Ovarian Vein: One of a pair of veins that emerge from the broad ligament near the ovaries and the uterine tubes.

Pelvic Congestion Syndrome (PCS): A syndrome involving chronic pelvic pain usually associated with the Varices or Varicosities in the pelvic area.

Varices or Varicosities: Abnormally enlarged or twisted blood vessels.

Applicable Codes

The following list(s) of procedure and/or diagnosis codes is provided for reference purposes only and may not be all inclusive. Listing of a code in this policy does not imply that the service described by the code is a covered or non-covered health service. Benefit coverage for health services is determined by the member specific benefit plan document and applicable laws that may require coverage for a specific service. The inclusion of a code does not imply any right to reimbursement or guarantee claim payment. Other Policies and Coverage Determination Guidelines may apply.

Coding Clarification: According to the American Medical Association (AMA), CPT code 37241 is specific to venous embolization or occlusion and excludes lower extremity venous incompetency. Coding instructions state that 37241 should not be used to report treatment of incompetent extremity veins. For sclerosis of veins or endovenous ablation of incompetent extremity veins, see 36468-36479 (CPT Assistant, 2014).
DESCRIPTION OF SERVICES

Pelvic Congestion Syndrome (PCS), also known as pelvic venous incompetence (PVI), causes noncyclic pelvic pain and discomfort, lasting for at least 6 months, and typically affects women of reproductive age. Varicosities of the Ovarian Veins and/or Internal Iliac Veins are believed to lead to PCS. For those patients who fail to adequately respond to conventional treatments (i.e., pharmacological therapy or surgical intervention), embolization therapy of the Ovarian Vein and/or Internal Iliac Vein has been proposed as an alternative (Nasser et al., 2014).

Patients with PCS may be treated with Ovarian Vein embolization following venography to visualize the affected veins (Bittles et al., 2008; Nasser et al., 2014). Under Fluoroscopy, an interventional radiologist guides a catheter to the affected vein, and inserts inert embolic agents to completely seal the vein. As a result, blood flow is rerouted, thereby reducing pressure within the targeted veins. Several types of embolic agents may be used, and include, but are not limited to, metal coils, sclerosing agents, and gelatin sponges. These agents may either be temporary or permanent. Since the Ovarian Veins and Internal Iliac Veins are in close proximity, embolization of the Internal Iliac Veins may also be necessary (Nasser et al., 2014).

CLINICAL EVIDENCE

Guirola et al. (2018) provided one-year outcomes from a randomized, prospective, single-center study which compared fibered platinum coils (FPC) versus vascular plugs (VP) in 100 women with pelvic congestion syndrome (PCS). Patients were randomized to either FPC (n=50) or VP (n=50). Primary outcome (clinical success at 1 year using a VAS), number of devices, procedure and fluoroscopy times, radiation doses, costs, and complications were compared, and participants were followed at 1, 3, 6, and 12 months. Clinical success and subjective improvement were not significantly different at 1-year follow-up (89.7% for FPCs vs 90.6% for VPs; P = .760). The authors concluded that embolization for PCS resulted in pain relief in 90% of patients; clinical success was not affected by embolic device. Longer-term outcomes are needed to evaluate embolization procedures for the treatment of PCS.

Champaneria et al. (2016) conducted a systematic review of treatment to determine the effectiveness of treatment for PCS, and concluded that the data supporting its diagnosis and treatment are limited and of variable methodological quality. Their assessment revealed that embolization appears to provide symptomatic relief in the majority of women and is safe; however, the majority of included studies of embolization were relatively small case series and only a single randomized controlled trial was considered at risk of potential biases. There is scope and demand for considerable further research in which adequately powered randomized trials are essential to provide evidence on the effectiveness of embolization.

O’Brien and Gillespie (2015) conducted a systematic review of the diagnosis and treatment of PCS. Thirty-seven references were small series including fewer than 50 patients or individual case reports documenting medical, surgical, or endovascular treatment of PCS. The majority of these papers demonstrated successful treatment of symptoms from PCS with embolization of one or both ovarian veins in addition to treatment of refluxing internal iliac vein branches. In addition, open surgery and, more recently, endovascular stenting of LRV obstruction have shown some promise in alleviating symptoms attributed to nutcracker syndrome. Whereas a fairly large body of data regarding transcatheter ovarian vein embolization exists, the authors summarized that these studies are limited to relatively small clinical series and retrospective reviews. The success rates for the reduction of chronic pelvic pain (CPP) in these studies range from 47% to 94% with average follow-ups of 12 to 36 months. The authors concluded that ultimately, there remains an uncertainty as to the optimal technique for ovarian vein embolization, although a combination of coils and sclerosants has demonstrated clinical efficacy in a number of studies described before and is the most common published technique for ovarian vein embolization. In addition, there is currently no evidence to suggest a difference in symptomatic relief with regard to unilateral vs bilateral ovarian vein embolization.
In a single-center case series, Laborda et al. (2013) reported long-term results in 202 women with chronic pelvic pain (CPP). Inclusion criteria were: lower limb varices and CPP for more than 6 months, pelvic veins >6mm on ultrasonography, and either venous reflux or presence of communicating veins. The primary outcomes were pain assessment using a visual analog scale (VAS), and patient satisfaction. Technical and clinical successes were also evaluated as secondary outcomes. Follow-up evaluations were conducted at 1, 3, and 6 months, and each year thereafter for 5 years. At 5-years of follow-up, 11% of women were lost to follow-up, while 89% were available for evaluation. Study results demonstrated a significant improvement in pain (7.34±0.7 at baseline versus 0.78±1.2 at follow-up; P<0.0001). Technical success was considered 100%. Clinical success was observed in nearly 94% of all patients and approximately 33% experienced complete resolution of symptoms. Mean individual satisfaction scores were 7.39 [standard deviation (SD), 1.5; scale 0-9]. Major complications included four cases of coil migration and six cases of groin hematoma. Methodological limitations of this study include the case series design, the lack of appropriate controls for comparison, and the lack of diagnostic criteria during the patient selection process.

Nasser et al. (2014) conducted a retrospective review (n=113) in women with PCS who underwent embolization of the ovarian and pelvic varicose veins. The primary outcome was pain assessment using VAS. Patients were followed for a period of one year. Of the 113 included patients, 13 (10%) were lost to follow-up. At the end of follow-up, 37% had complete resolution of symptoms, 53% of patients had no pelvic pain and 47% had partial pain relief. There was also a significant reduction in the mean score of total associated symptoms at 12 months (2.69 at baseline to 0.92 at post-procedure). Complications were considered relatively minimal, with four cases of coil migrations. No other serious complications were reported.

In a smaller case series, Hocquelet et al. (2013) assessed the safety and efficacy of embolization for PCS (n=33). Average duration of follow-up was 26 months (range, 3-59). Patients experienced a significant reduction in pain following the procedure. The average VAS at baseline was 7.37 (SD, 0.99) compared with 1.36 (SD, 1.73) after embolization (P<0.0001). A total of 20 patients (~61%) had complete symptom resolution, 11 patients (~33%) had partial resolution, and 2 patients (6%) had no improvement.

Additional prospective and retrospective case series evaluated a small number of patients with PCS (Dorobisz et al., 2017; Marcelin et al., 2017; Siqueira et al., 2016; Nasser et al., 2014; Castenmiller et al., 2013; Laborda et al., 2013; Meneses et al., 2013; Smith et al., 2012; Tinelli et al., 2012; Mallios et al., 2011). Well-designed randomized controlled trials with a larger patient population and longer term outcomes are needed to further evaluate embolization procedures for pelvic congestion syndrome.

In an evaluation of pelvic vein embolization indications, techniques and outcomes, Lopez (2015) summarized that evidence remains poor for its efficacy, and although initially anecdotal by way of case reports and small series, data is accumulating in larger series. There remains, however, a lack of robust evidence of its effectiveness, and this partly reflects the challenges of actually making the diagnosis clinically and radiologically, as well as the difficulty in assessing outcome. For pelvic congestion syndrome, symptomatic response is usually subjective but visual analogue scales (or variations thereof) have most often been used to attempt to identify a more objective outcome.

Daniels et al. (2016) conducted a systematic review to evaluate the effectiveness of embolization of incompetent pelvic veins performed to reduce CPP. Twenty-one prospective case series and one poor-quality randomized trial of embolization (involving a total of 1,308 women) were identified. The authors found that early substantial relief from pain was observed in approximately 75% of women undergoing embolization, and generally increased over time and was sustained. In addition, significant pain reductions following treatment were observed in all studies that measured pain on a visual analog scale. Repeat intervention rates were generally low. There were few data on the impact on menstruation, ovarian reserve, or fertility, but no concerns were noted. Transient pain was common following foam embolization, and there was a < 2% risk of coil migration. In the authors' opinion, embolization appears to provide symptomatic relief of CPP in the majority of women and is safe, although the quality of the evidence is low.

Hansrani et al. (2015) conducted a well-designed systematic review of the literature to evaluate the safety and effectiveness of transvenous occlusion of incompetent pelvic varicosities. Study authors selected 13 studies (n=866) that evaluated patients had CPP, PCS, or pelvic pain. The interventions generally consisted of transvenous occlusion of the ovarian and internal iliac veins (via the femoral or jugular veins) using metallic coils, sclerosants, or glue. A total of 10 studies were prospective uncontrolled, 2 were retrospective, and 1 was a randomized controlled trial (RCT) that included untreated controls. In 9 of 13 studies, patients experienced significant improvement in pelvic pain and other PCS symptoms following embolization of the pelvic varicosities when compared with baseline symptoms. One study reported 13% of recurrence at 5 years of follow-up. Embolization was generally considered technically successful, with 98 to 100% of veins occluded at first attempt. Adverse events included coil migration in 1.6% of patients, abdominal pain in 1.2%, and vein perforation in 0.6%. One serious complication was reported as coil migration to the lungs.
Society for Vascular Surgery (SVS)/ American Venous Forum (AVF)

In a guideline published by the SVS and the AVF in 2011, guideline authors suggest “treatment of pelvic congestion syndrome and pelvic varices with coil embolization, plugs, or transcatheter sclerotherapy, used alone or together (2B).” The 2B recommendation indicates a “weak” recommendation based on moderate quality evidence, where the benefits of the technology are considered closely balanced with risks and burdens (Gloviczki et al., 2011).

Other professional society clinical guidelines that address embolization procedures for PCS were not identified.

REFERENCES

POLICY HISTORY/REVISION INFORMATION

<table>
<thead>
<tr>
<th>Date</th>
<th>Action/Description</th>
</tr>
</thead>
</table>
| 04/01/2019 | • Updated supporting information to reflect the most current description of services, clinical evidence, CMS information, and references; no change to coverage rationale or lists of applicable codes
• Archived previous policy version 2018T0574H |

INSTRUCTIONS FOR USE

This Medical Policy provides assistance in interpreting UnitedHealthcare standard benefit plans. When deciding coverage, the member specific benefit plan document must be referenced as the terms of the member specific benefit plan may differ from the standard plan. In the event of a conflict, the member specific benefit plan document governs. Before using this policy, please check the member specific benefit plan document and any applicable federal or state mandates. UnitedHealthcare reserves the right to modify its Policies and Guidelines as necessary. This Medical Policy is provided for informational purposes. It does not constitute medical advice.

This Medical Policy may also be applied to Medicare Advantage plans in certain instances. In the absence of a Medicare National Coverage Determination (NCD), Local Coverage Determination (LCD), or other Medicare coverage guidance, CMS allows a Medicare Advantage Organization (MAO) to create its own coverage determinations, using objective evidence-based rationale relying on authoritative evidence (Medicare IOM Pub. No. 100-16, Ch. 4, §90.5).

UnitedHealthcare may also use tools developed by third parties, such as the MCG™ Care Guidelines, to assist us in administering health benefits. UnitedHealthcare Medical Policies are intended to be used in connection with the independent professional medical judgment of a qualified health care provider and do not constitute the practice of medicine or medical advice.