Gastrointestinal Pathogen Nucleic Acid Detection Panel Testing for Infectious Diarrhea

Policy Number: 2021T0604C
Effective Date: March 1, 2021

Table of Contents

<table>
<thead>
<tr>
<th>Coverage Rationale</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Documentation Requirements</td>
<td>1</td>
</tr>
<tr>
<td>Applicable Codes</td>
<td>2</td>
</tr>
<tr>
<td>Description of Services</td>
<td>2</td>
</tr>
<tr>
<td>Clinical Evidence</td>
<td>3</td>
</tr>
<tr>
<td>U.S. Food and Drug Administration</td>
<td>3</td>
</tr>
<tr>
<td>References</td>
<td>3</td>
</tr>
<tr>
<td>Policy History/Revision Information</td>
<td>8</td>
</tr>
<tr>
<td>Instructions for Use</td>
<td>9</td>
</tr>
</tbody>
</table>

Coverage Rationale

The following are proven and medically necessary:

- Multiplex polymerase chain reaction (PCR) panel testing of gastrointestinal pathogens of up to 5 targets when performed as part of an evaluation that includes blood cultures for an individual with any of the following:
 - Diarrhea for more than 7 days with any of the following:
 - fever; or
 - bloody or mucoid stools; or
 - severe abdominal cramping or tenderness; or
 - signs of sepsis
 - Suspected enteric fever (i.e., typhoid or paratyphoid) in an individual with a history of recent travel to an endemic region (e.g., south-central Asia, Southeast Asia, and southern Africa) or who has consumed foods prepared by people with recent endemic exposure

- Multiplex PCR panel testing of gastrointestinal pathogens of up to 11 targets for the evaluation of persistent diarrhea in an individual with any of the following:
 - At risk for Clostridium difficile (C. difficile) colitis and has had diarrhea for more than 7 days with any of the following:
 - fever; or
 - bloody or mucoid stools; or
 - severe abdominal cramping or tenderness; or
 - signs of sepsis
 - Acquired Immune Deficiency Syndrome (AIDS)
 - On immunosuppressive medications either following an organ transplant or when used for treatment of an autoimmune disease
 - Other condition causing immunosuppression and other stool diagnostic studies have failed to yield a pathogenic organism
Due to insufficient evidence of efficacy, multiplex PCR panel testing of gastrointestinal pathogens is unproven and not medically necessary for evaluating all other indications not listed above as proven and medically necessary.

Documentation Requirements

Benefit coverage for health services is determined by the member specific benefit plan document and applicable laws that may require coverage for a specific service. The documentation requirements outlined below are used to assess whether the member meets the clinical criteria for coverage but do not guarantee coverage of the service requested.

<table>
<thead>
<tr>
<th>CPT Codes*</th>
<th>Required Clinical Information</th>
</tr>
</thead>
</table>
| 0097U 87505 87506 87507 | Medical notes documenting all of the following:
• Current diagnosis
• History of illness and date of onset
• Co-morbidities
• Results of blood cultures and other lab tests
• Number of pathogen targets being tested
• Physician treatment plan based on the results of panel testing |

*For code descriptions, see the Applicable Codes section.

Applicable Codes

The following list(s) of procedure and/or diagnosis codes is provided for reference purposes only and may not be all inclusive. Listing of a code in this policy does not imply that the service described by the code is a covered or non-covered health service. Benefit coverage for health services is determined by the member specific benefit plan document and applicable laws that may require coverage for a specific service. The inclusion of a code does not imply any right to reimbursement or guarantee claim payment. Other Policies and Guidelines may apply.

<table>
<thead>
<tr>
<th>CPT Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0097U</td>
<td>Gastrointestinal pathogen, multiplex reverse transcription and multiplex amplified probe technique, multiple types or subtypes, 22 targets (Campylobacter [C. jejuni/C. coli/C. upsaliensis], Clostridium difficile [C. difficile] toxin A/B, Plesiomonas shigelloides, Salmonella, Vibrio [V. parahaemolyticus/V. vulnificus/V. cholerae], including specific identification of Vibrio cholerae, Yersinia enterocolitica, Enteroaggregative Escherichia coli [EAEC], Enteropathogenic Escherichia coli [EPEC], Enterotoxigenic Escherichia coli [ETEC] It/st, Shiga-like toxin-producing Escherichia coli [STEC] stx1/stx2 [including specific identification of the E. coli O157 serogroup within STEC], Shigella/Enteroinvasive Escherichia coli [EIEC], Cryptosporidium, Cyclospora cayetanensis, Entamoeba histolytica, Giardia lamblia [also known as G. intestinalis and G. duodenalis], adenovirus F 40/41, astrovirus, norovirus GI/GII, rotavirus A, sapovirus [Genogroups I, II, IV, and V])</td>
</tr>
<tr>
<td>87505</td>
<td>Infectious agent detection by nucleic acid (DNA or RNA); gastrointestinal pathogen (e.g., Clostridium difficile, E. coli, Salmonella, Shigella, norovirus, Giardia), includes multiplex reverse transcription, when performed, and multiplex amplified probe technique, multiple types or subtypes, 3-5 targets</td>
</tr>
<tr>
<td>87506</td>
<td>Infectious agent detection by nucleic acid (DNA or RNA); gastrointestinal pathogen (e.g., Clostridium difficile, E. coli, Salmonella, Shigella, norovirus, Giardia), includes multiplex reverse transcription, when performed, and multiplex amplified probe technique, multiple types or subtypes, 6-11 targets</td>
</tr>
<tr>
<td>87507</td>
<td>Infectious agent detection by nucleic acid (DNA or RNA); gastrointestinal pathogen (e.g., Clostridium difficile, E. coli, Salmonella, Shigella, norovirus, Giardia), includes multiplex reverse transcription, when performed, and multiplex amplified probe technique, multiple types or subtypes, 12-25 targets</td>
</tr>
</tbody>
</table>

CPT® is a registered trademark of the American Medical Association
Description of Services

A variety of viruses, bacteria, and parasites can cause gastrointestinal (GI) infections. Testing for parasites and viral etiologies for community-acquired diarrhea is not necessary since this type of diarrhea is generally self-limited, managed by supportive care and hydration, and virus specific therapy is not available to treat this condition. After bacteria pathogens are ruled out, travelers’ diarrhea with symptoms may require traditional ova and parasite stool examination and/or specific protozoa antigen or molecular testing.

Traditional methods of diagnosis include bacterial culture, microscopy with and without special stains and immunofluorescence, and antigen testing. Culture-independent techniques have been developed that use polymerase chain reaction (PCR) or real-time PCR and reverse-transcription PCR to amplify targets and detect the ribonucleic acid (RNA) or deoxyribonucleic acid (DNA) of potential pathogens. In addition to single pathogen diagnostic tests, gastrointestinal (GI) pathogen nucleic acid detection panels simultaneously test for the presence of multiple pathogenic microbes in a stool sample (Palavecino, 2015).

Clinical Evidence

Multiplex Polymerase Chain Reaction (PCR) Panel Testing Of 3-11 Targets

Beckman and Ferrieri (2019) compared the integrity of Verigene Enteric Pathogens (PCR/microarray) test to traditional enteric culture methods for identifying Salmonella and Shigella from stool samples from February 2016 to August 2016. Positive bacterial pathogen samples underwent confirmatory cultures. Valid results were in 3,767/3,795 (99.3%) samples; 487 (13.2%) were positive for at least one bacterial and/or viral pathogen by Verigene and 45.5% tested positive for one or more bacterial pathogens. The most frequently identified pathogens by PCR/microarray were norovirus (50.3%), Campylobacter (18.3%), Salmonella (13.7%) and Shigella (5.8%). Agreement between positive culture-based testing and PCR/microarray was 85.3%. PCR/microarray testing revealed 95.2% and 87.5% sensitivity and 99.8% and 99.8% specificity for Salmonella and Shigella, respectively, compared with cultures. Based on their findings, the authors surmised that the Verigene PCR/microarray platform reliably produced valid stool-test results for common bacterial/viral causes of acute diarrhea in addition to detecting pathogens not identified using culture-based methods.

Performance characteristics of PCR for the detection of Salmonella compared to the gold standard of culture were evaluated by Hapuarachchi et al. (2019). The sensitivity and specificity of PCR using the BD MAX Enteric Bacterial Panel was compared to those of enrichment culture during a nine-month prospective study; all stool samples underwent both PCR and culture for Salmonella. Selenite enrichment culture for salmonella was confirmed using the API 10S and serotyping. A sample size of 6,372 stool culture and PCR pairs were studied. The Salmonella prevalence was reported as 1.2%. The sensitivity, specificity, positive predictive value and negative predictive value of PCR vs. culture was 89% (67/75), 99.8% (6286/6297), 86% (67/78) and 99% (6286/6294), respectively. The conclusion was made that using the BD MAX Enteric Bacterial Panel, enrichment culture was significantly more sensitive than PCR for detecting salmonella in stool samples. The authors, therefore, recommended that when PCR testing is used, concurrent enrichment culture testing for salmonella be performed in parallel.

Tilmanne et al. (2019) compared the results of molecular testing methods and routine diagnostic methods for the detection of acute gastroenteritis (AGE) in symptomatic children and asymptomatic controls. A total of 178 patients admitted to a pediatric emergency department from two hospitals in Brussels from May 2015 to October 2016 were included in the study; 165 asymptomatic controls originated from the same hospitals. Stool samples were taken from all participants and analyzed for common pathogenic bacteria (culture), virus (immunochromatography) and parasites (microscopy). The Luminex Gastrointestinal Pathogen Panel was used for the detection of common enteropathogens using multiplex-PCR. An enteropathogen was detected in 62.4% (111/178) of cases when combining the two methods (56.2% (100/178) by Luminex, 42.7% (76/178) with routine methods) and 29.1% (48/165) of controls (24.2% (40/165) by Luminex and 10.3% (17/165) by routine methods). Campylobacteria, Shigella, Yersinia were missed by Luminex, but detected by culture method. However, Luminex detected Salmonella more often than routine methods (29/178 (16.3%) vs. 7/178 (3.9%), p <0.05. The authors raised concerns about the pathogens missed by Luminex vs. those detected by culture. While the high positivity and rapid turnaround time for diagnosis of AGE by Luminex is promising, their concern was noted regarding difficulty of result interpretation due to high positivity rates in cases and controls.
One hundred fifty-two stool samples were tested using Verigene® enteric pathogen test, BioFire FilmArray™ gastrointestinal panel and Luminex xTAG® gastrointestinal pathogen panel to compare the performance of each platform. Huang et al. (2019) studied the three platforms for the detection of Campylobacter, Salmonella, Shigella, Shiga-toxin-producing E.coli, norovirus, and rotavirus. Reported sensitivities and specificities of the assays were: Campylobacter, BioFire (100,100), Verigene (83.3,99.3), Luminex (91.7,100); Salmonella, BioFire (95.8,100), Verigene (83.3,100), Luminex (79.2,110); Shigella, BioFire (100,100), Verigene (95.4,99.1), Luminex(100,100); E.coli, BioFire (100,100), Verigene(91.7,100), Luminex (91.7,100); norovirus, BioFire (94.7,99.3), Verigene (89.0,100), Luminex (89.5,100); and rotavirus, BioFire (100,98.6), Verigene (71.4,100), Luminex (100,100). Each multiplex panel detected the majority of gastrointestinal pathogens when compare to traditional culture-based testing methods; however, the authors added that Verigene and BioFire testing platforms offer rapid, on-demand testing in a moderately complex testing environment, while Luminex with its higher complexity has greater throughput in a single batch.

Freeman et al. (2017) conducted a systematic review of the evidence for the clinical effectiveness for three multiplex gastrointestinal pathogen panel (GPP) tests (xTAG, FilmArray and Faecal Pathogens B). Twenty-three studies that included patients with acute diarrhea presenting at a community or hospital setting compared GPP tests with standard microbiology techniques. An evidentia finding of the review is that GPP testing produces a greater number of pathogen-positive findings than conventional testing, but the clinical importance and consequence of these additional positive findings is uncertain. According to the authors, GPP testing can correctly identify the same positive cases as conventional methods but GPP testing adds more false positive results which cause unnecessary treatment and potentially a delayed return to normal activities. The authors stated that an additional limitation of GPP tests is that although the presence of bacterial pathogens is identified there is no bacterial culture to support either antimicrobial susceptibility testing or subtyping to support public health surveillance. Culturing from positive samples may be required to guide antimicrobial treatment or public health investigation when these are required.

Khare et al. (2014) conducted a comparative evaluation of the FilmArray GI Panel and the Luminex xTag GI pathogen panel using stool samples submitted for routine GI testing such as culture, antigen testing, and individual real-time PCR (n=500). The FilmArray GI Panel targeted 23 pathogens and the Luminex xTag panel targeted 11 pathogens. Of the samples tested, 230 were prospectively collected and 270 were retrospectively collected. Results suggest the sensitivity of FilmArray across targets ranged from 91.7% to 100% and the specificity ranged from 96.6% to 100% among the prospectively collected specimens. Sensitivity ranged from 95.8% to 100% and specificity ranged from 90.8% to 100% for xTAG. Several targets had lower sensitivity for the retrospectively analyzed samples. Although more than half of the samples were retrospectively analyzed with multiplex assay, data was provided separately for the prospective and retrospective samples.

Multiplex Polymerase Chain Reaction (PCR) Panel Testing of Greater Than 11 Targets

Although multiplex PCR panel testing is proven and medically necessary in specific clinical situations, the clinical utility of panel testing for greater than 11 gastrointestinal infectious pathogens in the outpatient setting has not been established in the published, peer-reviewed medical literature.

Leli et al. (2020) evaluated and compared the diagnostic yield of the FilmArray gastrointestinal panel to that of routine stool culture for etiological diagnosis of infectious diarrhea. Stool samples (n=183) collected as part of routine care from March 2016 to March 2019 were included in this retrospective analysis. Samples were then cultured and tested by FilmArray and the following results from the comparison of diagnostic accuracy between culture and FilmArray with respect to Campylobacter, Salmonella, Shigella, Yersinia enterocolitica and Shiga-like toxin producing E. coli 0157 were reported: 100% (95% CI: 85-100%) sensitivity; 93.4% (95% CI: 87.9-96.6%) specificity; 74.3% (95% CI: 57.5-86.4%) positive predictive value; 100% (95% CI:96.7-100%) negative predictive value; 2.9% (95% CI: 1.6-5.1) positive likelihood ratio; zero negative likelihood ratio. The FilmArray gastrointestinal panel identified 34.5% more pathogens than traditional culture methods (p=0.001). The authors concluded that FilmArray identified a spectrum of pathogens and had good diagnostic performance when compared to standard culture for the diagnosis of infectious diarrhea. However, the study lacks clinical data and was performed in a single site in a community hospital setting, thus the pathogen detection rate cannot be completely generalized and positive results for c. difficile and viruses were not confirmed with alternative or reference methods.

Pouletty et al. (2019) utilized multiplex PCR on stool samples to determine pathogen distribution of traveller’s diarrhea (TD) in children traveling from tropical countries. From August 2014 to October 2015, children with TD admitted to two university hospitals were included in the prospective study. The FilmArray GI PCR panel was used to identify 22 pathogens. Comparisons for the detection of Salmonella, Shigella and Campylobacter by PCR and culture were made. Prevalence of extended spectrum
beta-lactamase (ESBL) producing Enterobacteriaceae was also evaluated. In 58 (98%) of the 59 children, at least one pathogen was recognized. This included 9 enteropathogenic bacteria, 5 viruses and 2 parasites. The detection of enteropathogenic bacteria by multiplex PCR was enhanced by 25%. Enteropathogenic E. coli (n=32), enteropathogenic E. coli (n=26), enterotoxigenic E. coli (n=19), Salmonella enterica/enteroinvasive E. coli/Shigella (n=16 each), Cryptosporidium, sapovirus (n=11 each), Campylobacter jejuni, norovirus (n=10 each), rotavirus (n=9), Giardia (n=8) and Shiga-toxin producing E. coli (n=4) were the most frequent pathogens identified. Co-infections (n=52) were reported including bacteria and viruses (n=21), multiple bacteria (n=14), or bacteria and parasites (n=10). ESBL were found in 28 cases. The authors concluded that PCR performed on stools demonstrated a high prevalence of diverse enteric pathogens and co-infections in children with TD. Multiplex PCR optimized the number of treated patients by 27% compared with culture. The authors concluded that because major enteropathogenic bacteria were detected more often by PCR, the technique may allow earlier and more appropriate antibiotic treatment and increase the number of correctly diagnosed patients. Noted limitations of this study include the lack of controls involving traveling children without diarrhea and non-traveling children, the lack of PCR testing for all the children admitted for TD, and patient recruitment solely from the emergency department (these children likely had more severe symptoms). Lastly, comparison of this study’s results with other existing studies should be considered cautiously, as techniques and pathogens detected were not the same.

Axelrad et al. (2019) performed a retrospective analysis of 5,986 patients who underwent traditional stool culture testing from December 2012-February 2015 and 9,402 patients who had FilmArray GI panel testing from March 2015 to May 2017. Clinical management and health care utilization of patients following testing was evaluated. A total of 2,746 (29.2%) of the specimens tested positive on the FilmArray panel compared to 246 (4.1%) testing positive with stool cultures. Patients who underwent FilmArray testing were less likely to have an endoscopic procedure (8.4%) versus 9.6% who had stool culture (P=0.002). Patients tested by FilmArray were also less likely than those who had stool culture testing to be prescribed antibiotics (36.2% vs. 40.9%, P<0.001). In their study, the authors reported that patients tested by PCR were 12.5%, 7.3% and 11.4% less likely to have endoscopy, abdominal imaging and antibiotics prescribed, respectively. With a higher sensitivity and decreased turnaround time, multiplex PCR stool testing has the promise of optimizing health care and lowering costs, but the authors also recommend additional studies to determine how PCR results impact clinical management decisions and overall impact on patient care.

The Seegene Allplex Gastrointestinal, Luminex xTAG Gastrointestinal Pathogen Panel, and BD MAX Enteric Assays were compared by Yoo et al. (2019) to determine efficiency of gastrointestinal pathogen detection from 858 clinical stool samples. Positive percentage agreements of Seegene, Luminex, and BD MAX were 94% (258 of 275), 92% (254 of 275), and 78% (46 of 59), respectively. Luminex showed a low negative percentage agreement for Salmonella (n=31). For viruses, positive/negative percentage agreements of Seegene and Luminex were 99%/96% and 93%/99%, respectively. The authors suggested that these assays are promising for the detection of gastrointestinal pathogens simultaneously.

A prospective study from the Alberta Provincial Pediatric Enteric Infection Team was conducted by Kellner et al. (2019) between December 2014 and March 2018 to determine agreement for the bacterial pathogens of interest between stool culture methods and the Luminex xTAG gastrointestinal pathogen panel (GPP). The primary outcome was bacterial pathogen detection agreement from a cohort of 3,089 children with gastroenteritis. This was measured as overall percent agreements, positive percentage agreement (PPA), and Cohen’s K, between stool bacterial culture and the GPP for bacterial pathogens sought by both detection methods: Campylobacter spp, E. coli 0157, Salmonella spp and Shigella spp. A secondary analysis targeted Salmonella spp. which included phenotype assessment, additional testing of GPP-negative/culture positive isolate suspensions with the GPP, and in-house and commercial confirmatory nucleic acid testing of GPP positive/culture negative extracts. The overall percentage agreement between the two testing methods was >99% for each individual pathogen and 98.9% (95% CI, 98.5%, 99.3%) for all combined pathogens. Overall, PPA was 83% (73/88; 95% CI, 73.1%, 89.8%). Cohen’s K was >0.70 for E. coli 0157, Shigella spp. and Salmonella spp and 0.89 for Campylobacter spp. Salmonella spp., the most frequently identified pathogen, was detected from the samples of 64 patients; 12 (19%) by culture only, 9 (14%) by GPP only, and 43 (67%) by both technologies. Positive percent agreement for Salmonella spp. was 78.2% (95% CI, 64.6%, 87.8%). Isolate suspensions from 12 patients with GPP negative/culture positive isolate suspensions with the GPP, and in-house and commercial confirmatory nucleic acid testing of GPP positive/culture negative extracts. For rectal swab and stool samples, the median cycle threshold (CT) values, determined using quantitative PCR, were higher for GPP-negative/culture positive samples than for GPP-positive/culture positive samples (for rectal swabs, 36.9% [interquartile range {IQR}, 33.7, 37.1] vs. 30.9 [IQR, 26.2, 33.2], respectively [P=0.002]; for stool samples, 36.9 [IQR, 33.7, 37.1] versus 29.0 [IQR, 24.8, 30.8], respectively [P=0.001]). The authors concluded that GPP overall had high concordance with culture methods, however the PPA was suboptimal for shared
bacterial targets. Salmonella spp identification by GPP had a propensity for false positives and negatives. Therefore, the accuracy of GPP and other nucleic-acid amplification (NAAT) assays requires further studies to determine clinical validity and utility before culture replacement is considered.

The clinical validity of molecular testing for adult outpatients with diarrhea and the validation of the Infectious Disease Society of America (IDSA) 2017 testing recommendation was the primary objective of Clark et al. (2019). The IDSA recommends FDA-approved molecular testing panels for increased sensitivity and decreased turn-around times vs. bacterial cultures for the detection of enteric pathogens even though these molecular methods have not proven cost-effective and may not have a significant effect on molecular management. A retrospective chart review from the University of Virginia was performed for 629 samples using the FilmArray Gastrointestinal Panel for adults with diarrhea between March 2015 and July 2016. This review revealed that 127/629 (20.2%) of specimens had a detected pathogen; the most common identified were enteropathogenic E.coli (47.7.5%), norovirus (24.3.8%), enterotoaggregative E. coli (14.2.2%), Campylobacter (9.1.4%) and Salmonella (9.1.4%). Clinical yield was low, resulting in antimicrobial treatment indicated for 18(2.9%) of patients and any change in clinical management indicated for 33 (5.2%) of patients. Following the 2017 IDSA guidelines which recommend diagnostic testing for patients with fever, abdominal pain, bloody stool, or an immunocompromising condition, would have reduced testing by 32.3% without significantly reducing clinical yield (sensitivity, 97%; 95%CI, 84.2%-99.9%; negative predictive value, 99.5%; 95%CI, 97.3%-100.0%). In conclusion, the authors claimed that the IDSA guidelines were validated as sensitive but not specific clinical criteria for the use of diagnostic testing and demonstrated that following these guidelines could reduce testing by one-third without reducing clinical yield.

In a prospective observational study, Keske et al. (2018) aimed to detect the etiological agents of acute diarrhea by a molecular gastrointestinal pathogen test (MGPT) and assess the impact of MGPT on antimicrobial stewardship programs (ASP) for inpatients. Consequent patients who had acute watery diarrhea and fever for more than 72 hours or acute bloody diarrhea, were included in the study. ASP was implemented in acute diarrhea cases and the outcomes were compared in the pre-ASP and post-ASP periods. An FDA-cleared multiplexed gastrointestinal PCR panel system, the BioFire FilmArray which detects 20 pathogens in stool, was used. In total, 699 patients were included. In 499 (71%) patients, at least one pathogen was detected, and 176 out of 499 (36%) were inpatients. The most commonly detected pathogens in acute diarrhea were EPEC, EAEC, ETEC, Norovirus, STEC, and Campylobacter species. The authors found that MGPT detected high rates of C. difficile in children and of Salmonella spp., as well as relatively high rates of Campylobacter spp., which are hard to isolate by routine stool culture. According to the authors, using MGPT in clinical practice significantly decreased the unnecessary use of antibiotics. Inappropriate antibiotic use decreased in the post-ASP period compared with the pre-ASP period among inpatients (43% and 26%, respectively). However, this was a single center study. In addition, the authors state that the detection of pathogens using MGPT does not mean that the detected pathogen is the cause of diarrhea, so test results should be interpreted carefully.

Beal et al. (2017) assessed the clinical impact of a comprehensive molecular test, the BioFire FilmArray gastrointestinal (GI) panel, which tests for common agents of infectious diarrhea in approximately 1 hour. Patients with stool cultures submitted were tested on the GI panel (n = 241 patients; 223 were hospitalized and 18 were evaluated in the emergency department) and were compared with control patients (n = 594) from the year prior. The most common organisms detected by the GI panel were enteropathogenic Escherichia coli (EPEC, n = 21), norovirus (n = 21), rotavirus (n = 15), sapovirus (n = 9), and Salmonella (n = 8). Patients tested on the GI panel had an average of 0.58 other infectious stool tests compared with 3.02 in the control group. The numbers of days on antibiotic(s) per patient were 1.73 in the cases and 2.12 in the controls. Patients with the GI panel had an 0.18 abdomen and/or pelvic imaging studies per patient compared with 0.39 in the controls. The average length of time from stool culture collection to discharge was 3.4 days in the GI panel group versus 3.9 days in the controls. According to the authors, the GI panel improved patient care by rapidly identifying a broad range of pathogens which may not have otherwise been detected, reducing the need for other diagnostic tests, reducing unnecessary use of antibiotics, and leading to a reduction in hospital length of stay. This study suggests that the use of multiplex molecular panels result in an improvement in patient clinical outcomes in the setting of hospitalized patients with diarrhea.

Buss et al. (2015) evaluated the clinical validity of the FilmArray GI Panel and standard bacterial culture testing. In this cross-sectional study, prospectively collected samples submitted for stool culture were used to evaluate the clinical validity (n=1556). The majority of the specimens (86.8%) were collected from outpatients, with hospitalized and emergency room patients represented by 10.5% and 2.7% of the total study population, respectively. Cultures were set up within 4 days of specimen collection. FilmArray was performed by blinded BioFire personnel for comparator testing. With respect to standard methods of detection, results suggest that FilmArray is associated with sensitivities ranging from 94.5% to 100% and specificities ranging from 97.1% to 100% across pathogen types.
Clinical Practice Guidelines

American College of Gastroenterology (ACG)

The 2016 ACG Clinical Guidelines for Diagnosis, Treatment, and Prevention of Acute Diarrheal Infections in Adults makes the following diagnosis recommendations (Riddle et al., 2016):

- Stool diagnostic studies may be used if available in cases of dysentery, moderate-to-severe disease, and symptoms lasting >7 days to clarify the etiology of the patient’s illness and enable specific directed therapy (Strong recommendation, very low level of evidence).
- Traditional methods of diagnosis (bacterial culture, microscopy with and without special stains and immunofluorescence, and antigen testing) fail to reveal the etiology of the majority of cases of acute diarrhea infection. If available, the use of Food and Drug Administration-approved culture independent methods of diagnosis can be recommended at least as an adjunct to traditional methods (Strong recommendation, low level of evidence).

Infectious Diseases Society of America (IDSA)

The 2017 IDSA Practice Guidelines for the Diagnosis and Management of Infection Diarrhea list the following recommendations (Shane et al., 2017):

- People with fever or bloody diarrhea should be evaluated for enteropathogens for which antimicrobial agents may confer clinical benefit, including Salmonella enterica subspecies, Shigella, and Campylobacter (strong recommendation, low level of evidence).
- Enteric fever should be considered when a febrile person (with or without diarrhea) has a history of travel to areas in which causative agents are endemic, has had consumed foods prepared by people with recent endemic exposure, or has laboratory exposure to Salmonella enterica subspecies enterica serovar Typhi and Salmonella enterica subspecies enterica serovar Paratyphi (strong recommendation, moderate level of evidence).
- Stool testing should be performed for Salmonella, Shigella, Campylobacter, Yersinia, C. difficile, and STEC in people with diarrhea accompanied by fever, bloody or mucoid stools, severe abdominal cramping or tenderness, or signs of sepsis (strong recommendation, moderate level of evidence). Bloody stools are not an expected manifestation of infection with C. difficile. (strong recommendation, moderate level of evidence).
- Stool testing should be performed under clearly identified circumstances for Salmonella, Shigella, Campylobacter, Yersinia, C. difficile, and STEC in symptomatic hosts (strong recommendation, low level of evidence). Specifically,
 - Test for Yersinia enterocolitica in people with persistent abdominal pain (especially school-aged children with right lower quadrant pain mimicking appendicitis who may have mesenteric adenitis), and in people with fever at epidemiologic risk for yersiniosis, including infants with direct or indirect exposures to raw or undercooked pork products.
 - In addition, test stool specimens for Vibrio species in people with large volume rice water stools or either exposure to salty or brackish waters, consumption of raw or undercooked shellfish, or travel to cholera-endemic regions within 3 days prior to onset of diarrhea.
- A broad differential diagnosis is recommended in immunocompromised people with diarrhea, especially those with moderate and severe primary or secondary immune deficiencies, for evaluation of stool specimens by culture, viral studies, and examination for parasites (strong, moderate). People with acquired immune deficiency syndrome (AIDS) with persistent diarrhea should undergo additional testing for other organisms including, but not limited to, Cryptosporidium, Cyclospora, Cystoisospora, microsporidia, Mycobacterium avium complex, and cytomegalovirus (strong recommendation, moderate level of evidence).
- Diagnostic testing is not recommended in most cases of uncomplicated traveler’s diarrhea unless treatment is indicated. Travelers with diarrhea lasting 14 days or longer should be evaluated for intestinal parasitic infections (strong, moderate). Testing for C. difficile should be performed in travelers treated with antimicrobial agent(s) within the preceding 8–12 weeks. In addition, gastrointestinal tract disease including inflammatory bowel disease (IBD) and postinfectious irritable bowel syndrome (IBS) should be considered for evaluation (strong recommendation, moderate level of evidence).
- Blood cultures should be obtained from infants younger than 3 months of age, people of any age with signs of sepsis or when enteric fever is suspected, people with systemic manifestations of infection, people who are immunocompromised, people with certain high-risk conditions such as hemolytic anemia, and people who traveled to or have had contact with travelers from enteric fever–endemic areas with a febrile illness of unknown etiology (strong recommendation, moderate level of evidence).
- Culture-independent, including panel-based multiplex molecular diagnostics from stool and blood specimens, and, when indicated, culture-dependent diagnostic testing should be performed when there is a clinical suspicion of enteric fever (diarrhea uncommon) or diarrhea with bacteremia (strong recommendation, moderate level of evidence).
La Hoz and Morris (2019) recommended that “for the diagnosis of SOT (solid organ transplant) recipients with suspected gastrointestinal infections”, gastrointestinal multiplex molecular assays are recommended to identify Cryptosporidium, Cyclospora, and Giardia.

U.S. Food and Drug Administration (FDA)

This section is to be used for informational purposes only. FDA approval alone is not a basis for coverage.

There are several commercial multiplex polymerase chain reaction (PCR) kits that have been cleared through the FDA 510(k) clearance process. These include xTAG gastrointestinal pathogen panels (GPPs); FilmArray Panels; Verigene panels; and BioCode GPPs.

To locate marketing clearance information for a specific panel, search the FDA 510(k) premarket notification database available at: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm (use Product Codes PCH and PCI). (Accessed December 7, 2020)

References

Policy History/Revision Information

<table>
<thead>
<tr>
<th>Date</th>
<th>Summary of Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>04/26/2021</td>
<td>Template Update</td>
</tr>
<tr>
<td></td>
<td>• Replaced content sub-heading titled “Professional Societies” with “Clinical Practice Guidelines” in Clinical Evidence section.</td>
</tr>
<tr>
<td></td>
<td>• Removed CMS Section</td>
</tr>
<tr>
<td></td>
<td>• Replaced reference to “MCG” Care Guidelines with “InterQual® criteria” in Instructions for Use.</td>
</tr>
<tr>
<td>03/01/2021</td>
<td>Coverage Rationale</td>
</tr>
<tr>
<td></td>
<td>• Revised coverage criteria; replaced criteria requiring:</td>
</tr>
<tr>
<td></td>
<td>o “Diarrhea for more than 7 days with fever and suspected bacteremia” with “diarrhea for more than 7 days with fever, bloody or mucoid stools, severe abdominal cramping or tenderness, or signs of sepsis”</td>
</tr>
<tr>
<td></td>
<td>o “On immunosuppressive medications following an organ transplant” with “on immunosuppressive medications either following an organ transplant or when used for treatment of an auto-immune disease”</td>
</tr>
<tr>
<td></td>
<td>Supporting Information</td>
</tr>
<tr>
<td></td>
<td>• Updated Clinical Evidence, CMS, and References sections to reflect the most current information</td>
</tr>
<tr>
<td></td>
<td>• Archived previous policy version 2020T0604B</td>
</tr>
</tbody>
</table>

Instructions for Use

This Medical Policy provides assistance in interpreting UnitedHealthcare standard benefit plans. When deciding coverage, the member specific benefit plan document must be referenced as the terms of the member specific benefit plan may differ from the standard plan. In the event of a conflict, the member specific benefit plan document governs. Before using this policy, please check the member specific benefit plan document and any applicable federal or state mandates. UnitedHealthcare reserves the right to modify its Policies and Guidelines as necessary. This Medical Policy is provided for informational purposes. It does not constitute medical advice.

This Medical Policy may also be applied to Medicare Advantage plans in certain instances. In the absence of a Medicare National Coverage Determination (NCD), Local Coverage Determination (LCD), or other Medicare coverage guidance, CMS allows a Medicare Advantage Organization (MAO) to create its own coverage determinations, using objective evidence-based rationale relying on authoritative evidence (Medicare IOM Pub. No. 100-16, Ch. 4, §90.5).
UnitedHealthcare may also use tools developed by third parties, such as the InterQual® criteria, to assist us in administering health benefits. UnitedHealthcare Medical Policies are intended to be used in connection with the independent professional medical judgment of a qualified health care provider and do not constitute the practice of medicine or medical advice.