COVERAGE RATIONALE

Multi-gene panel testing for the diagnosis of neuromuscular disorders is proven and medically necessary for the following:

- Suspected dystroglycanopathy (e.g., Walker Warburg syndrome, muscle-eye-brain disease, Fukuyama congenital muscular dystrophy, congenital muscular dystrophy 1C and 1D) in individuals with:
 - Age of onset of symptoms at 2 years old or less; or
 - Hypotonia, low muscle tone; or
 - Gross developmental delay; and
 - Evidence of muscle weakness; and
 - Elevated serum creatine kinase (CK) levels; and
 - One or more of the following:
 - Structural eye abnormalities
 - Intellectual disabilities
 - Epilepsy
 - Brain malformation

- Suspected congenital muscular dystrophy or myopathy in individuals with:
 - Age of onset of symptoms 2 years old or less; or
 - Hypotonia; Low muscle tone; or
 - Gross developmental delay; and
 - Evidence of diffuse muscle weakness; and
 - Additional clinical testing such as muscle biopsy or electromyelogram (EMG) is not available or is equivocal and does not aid in the differential diagnosis; and
 - There is a high likelihood that the condition is inherited; and
 - Targeted single gene genetic testing is negative; or
 - The phenotype could be explained by more than one gene found in the requested multi-gene panel

- Suspected Limb Girdle Muscular Dystrophy (LGMD) in individuals with:
 - Muscle weakness or wasting of the shoulders, upper arms, pelvic area, and thighs; and
 - One or more of the following:
 - Clinical features do not suggest a specific LGMD sub-type
 - Muscle biopsy is not available or not informative for a specific LGMD sub-type
 - Initial targeted genetic testing is not informative

- Suspected glycogen storage disease in with:
 - Adolescent or adult with exercise intolerance, muscle weakness, and muscle cramps; and
 - Normal or equivocal CK results; and
 - Exercise testing is unavailable or uninformative; or
 - Muscle biopsy is unavailable or uninformative; or
 - Targeted genetic testing was negative; or
 - Infant or child with unexplained liver disease, or muscle weakness, or heart dysfunction; and

Related Commercial Policies

- Chromosome Microarray Testing (Non-Oncology Conditions)
- Genetic Testing for Cardiac Disease
- Whole Exome and Whole Genome Sequencing

Community Plan Policy

- Genetic Testing for Neuromuscular Disorders

Medicare Advantage Coverage Summary(ies)

- Genetic Testing
- Laboratory Tests and Services
Muscle biopsy is unavailable or uninformative; or
- Enzyme testing was unavailable or uniformative; or
- Targeted genetic testing was negative

- Suspected mitochondrial disease in individuals with:
 - Progressive external ophthalmoplegia; or
 - Proximal weakness; or
 - Muscle cramping, fatigue, or exercise intolerance; and
 - Muscle biopsy or other clinical testing was uninformative; or
 - Persistently unexplained elevated lactic acid; or
 - Targeted genetic testing was negative

- Suspected hereditary peripheral neuropathy in individuals with:
 - A high degree of suspicion of having a hereditary neuropathy based on medical history, family history, and other clinical tests; or
 - Electrodiagnostic testing is not possible, or results are equivocal; or
 - Targeted genetic testing was negative

- Suspected hereditary spastic paraplegia (HSP) or ataxia in individuals with:
 - Peripheral neuropathy; and
 - Ataxia; and
 - A family history suggestive of a HSP or ataxia where a diagnosis has not been determined; or
 - Other clinical testing such as routine lab tests, imaging, muscle biopsy, or nerve conduction tests are inconclusive; or
 - Targeted genetic testing was negative

- Suspected distal myopathy or myofibrillar in individuals with:
 - Muscle weakness or wasting of the distal muscles i.e. hands, feet; and
 - One or more of the following:
 - Clinical features do not suggest a specific distal myopathy or myofibrillar sub-type
 - Muscle biopsy is not informative for a specific distal myopathy or myofibrillar sub-type
 - Initial targeted genetic testing is not informative
 - Cardiomyopathy

Multi-gene neuromuscular disease panels are unproven and not medically necessary for all other indications due to insufficient evidence of efficacy.

DOCUMENTATION REQUIREMENTS

Benefit coverage for health services is determined by the member specific benefit plan document and applicable laws that may require coverage for a specific service. The documentation requirements outlined below are used to assess whether the member meets the clinical criteria for coverage but do not guarantee coverage of the service requested.

<table>
<thead>
<tr>
<th>CPT/HCPCS Codes*</th>
<th>Required Clinical Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>81440</td>
<td>Medical notes documenting all of the following:</td>
</tr>
<tr>
<td></td>
<td>- Personal history of the condition, if applicable, including age at diagnosis</td>
</tr>
<tr>
<td></td>
<td>- Complete family history (usually three-generation pedigree) relevant to condition being tested</td>
</tr>
<tr>
<td>81443</td>
<td>- Genetic testing results of family member, if applicable, and reason for testing</td>
</tr>
<tr>
<td>81460</td>
<td>- Ethnicity/ancestry (e.g., Ashkenazi Jewish), if reason for testing</td>
</tr>
<tr>
<td>81465</td>
<td>- Any prior genetic testing results</td>
</tr>
<tr>
<td>81479</td>
<td>- How clinical management will be impacted based on results of genetic testing</td>
</tr>
<tr>
<td></td>
<td>- Genetic counseling (if available)</td>
</tr>
</tbody>
</table>

*For code descriptions, see the Applicable Codes section.

DEFINITIONS

Comparative Genomic Hybridization (CGH): CGH is a technology that can be used for the detection of genomic copy number variations (CNVs). Tests can use a variety of probes or single nucleotide polymorphisms (SNPS) to provide copy number and gene differentiating information. All platforms share in common that tumor (patient) and reference DNA are labelled with dyes or fluorescing probes and hybridized on the array, and a scanner measures differences in intensity between the probes, and the data is expressed as having greater or less intensity than the reference DNA (Piluso et al. 2011).

Neuromuscular Disorders (NMD): are group of inherited diseases that represent a number of conditions that result from impairment of nerves that control the muscles, or direct impairment of the muscles (Piluso et al. 2011).
Next Generation Sequencing (NGS): High-throughput DNA sequencing of large numbers of genes in a single reaction (Efthymiou et al. 2016).

Whole Exome Sequencing (WES): About 1% of a person’s DNA makes protein. These protein making sections are called exons. All the exons together are called the exome. WES is a DNA analysis technique that looks at all of the exons in a person, or a tissue type such as a tumor, at one time, rather than gene by gene (U.S. National Library of Medicine, 2017A).

Whole Genome Sequencing (WGS): WGS determines the sequence of the entire DNA in a person, or a tissue type, such as a tumor, which includes the protein making (coding) as well as non-coding DNA elements (U.S. National Library of Medicine, 2017B).

Variant of Unknown Significance (VUS): A variation in a genetic sequence that has an unknown association with disease. It may also be called an unclassified variant (Efthymiou et al. 2016).

APPLICABLE CODES

The following list(s) of procedure and/or diagnosis codes is provided for reference purposes only and may not be all inclusive. Listing of a code in this policy does not imply that the service described by the code is a covered or non-covered health service. Benefit coverage for health services is determined by the member specific benefit plan document and applicable laws that may require coverage for a specific service. The inclusion of a code does not imply any right to reimbursement or guarantee claim payment. Other Policies and Coverage Determination Guidelines may apply.

<table>
<thead>
<tr>
<th>CPT Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>81443</td>
<td>Genetic testing for severe inherited conditions (e.g., cystic fibrosis, Ashkenazi Jewish-associated disorders [e.g., bloom syndrome, Canavan disease, Fanconi anemia type c, mucolipidosis type vi, Gaucher disease, Tay-Sachs disease], beta hemoglobinopathies, phenylketonuria, galactosemia), genomic sequence analysis panel, must include sequencing of at least 15 genes (e.g., ACADM, ARSA, ASPA, ATP7B, BCKDHA, BCKDHB, BLM, CFTR, DHCR7, FANCC, G6PC, GAA, GALT, GBA, GBE1, HBB, HEXA, IK8KAP, MCOLN1, PAH)</td>
</tr>
<tr>
<td>81440</td>
<td>Nuclear encoded mitochondrial genes (e.g., neurologic or myopathic phenotypes), genomic sequence panel, must include analysis of at least 100 genes, including BCS1L, C10orf2, COQ2, COX10, DGUOK, MPV17, OPA1, PDSS2, POLG, POLG2, RRM2B, SCO1, SCO2, SLC25A4, SUCLA2, SUCLG1, TAZ, TK2, AND TYMP</td>
</tr>
<tr>
<td>81460</td>
<td>Whole mitochondrial genome (e.g., Leigh Syndrome, mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes [MELAS], myoclonic epilepsy with ragged-red fibers [MERRF], neuropathy, ataxia, and retinitis pigmentosa [NARP], Leber hereditary optic neuropathy [LHON]), genomic sequence, must include sequence analysis of entire mitochondrial genome with heteroplasmy detection</td>
</tr>
<tr>
<td>81465</td>
<td>Whole mitochondrial genome large deletion analysis panel (e.g., Kearns-Sayre syndrome, chronic progressive external ophthalmoplegia), including heteroplasmy detection, if performed</td>
</tr>
<tr>
<td>81479</td>
<td>Unlisted molecular pathology</td>
</tr>
</tbody>
</table>

DESCRIPTION OF SERVICES

Technologies used for genetic testing of neuromuscular disorders can vary, and can include, but are not limited to, tests that evaluate variations in the genes, such as chromosome microarray and next generation sequencing (NGS), as well as others that assess the gene products, such as gene expression arrays and microRNA analysis. The number of genes evaluated can range from a single gene to the whole exome or genome of an individual. Results of genetic testing may assist individuals and healthcare providers with determining a diagnosis, prognosis and identification of appropriate clinical interventions (Savarese et al. 2016; Piluso et al. 2011; and Ghaoui et al. 2015). This policy addresses genetic test panels with five or more genes for neuromuscular disorders. Neuromuscular diseases that typically present with a cardiomyopathy and are caused by a variant in a cardiomyopathy gene are addressed in the Medical Policy titled [Genetic Testing for Cardiac Disease](#).
Neuromuscular Disorders (NMD) are a heterogenous group of conditions that are caused by impaired muscles and impaired nerves that control the muscles. Examples of NMD include muscular dystrophies, nerve conduction disorders such as Charcot-Marie-Tooth (CMT), motor neuron disease (MND), hereditary spastic paraplegia (HSP), spinal muscular atrophies (SMA), and neuromuscular junction disease (myasthenic syndromes). Common symptoms include muscle weakness, cramps, numbness, respiratory and cranial nerve palsies. Many of these disorders are inherited, and over 500 genes are implicated in causing NMD (Efthymiou et al. 2016).

Dai et al. (2015) examined the clinical utility of utilizing a NGS panel subset 44 NMD genes derived from the Human Sequence Capture 2.1M of 399 genes. They evaluated 55 unrelated Chinese patients that presented with muscular dystrophy or congenital myopathy. Causative mutations were found in 18 genes of the 44 analyzed, and in 36 patients (65%). Mutations were verified by Sanger sequencing. The authors concluded that NGS was a more cost-effective approach, as previously neurologists would approach genetic testing using a serial single gene approach that was time consuming with lower diagnostic yield.

Neuromuscular diseases may present before birth as fetal akinesia, which can lead to intrauterine growth retardation, contractures, craniofacial anomalies, limb anomalies, pulmonary hypoplasia, and polyhydramnios. It is thought that 50% of fetal dyskinesias are related to neuromuscular disease, and over 30 genes have been implicated. For these cases it is more difficult to deeply phenotype the patients to the poor preservation of fetal tissue and the lack of specific pathological hallmarks from biopsy or autopsy material. Forty-five patients identified with fetal akinesia/hyokinesia from 38 unrelated families in Australia and studied through the University of Australia, Perth, underwent a NGS targeted panel of 336 genes. Families were grouped into three disease entities: Fetal akinesia deformation sequence (FADS) (n = 9), arthrogryposis (n = 13), and severe congenital myopathies (n = 16). A conclusive diagnosis was made in 18 families (47%). Mutations were found in eight previously known NMD genes and four novel genes. Further analysis of these four genes resulted in further understanding of muscle dysfunction and the mechanisms of sarcomere assembly. Autosomal dominant, autosomal recessive, X-linked, and de novo modes of inheritance were observed (Todd et al. 2015).

Chae et al. (2015) examined the clinical validity of using a targeted NGS panel of 579 genes associated with muscle disease. They tested 43 patients from the Seoul National University Children’s Hospital presenting with early onset (<5 years) hypotonia and/or muscle weakness with unknown genetic origin. Variants were classified based on the guideline from American College of Medical Genetics. Variants were confirmed by Sanger sequencing. Pathogenic variants were confirmed in 21 patients (48.8%). Eleven patients were found to have muscular dystrophies, and COL6A mutations were found in eight cases that had phenotypes consistent with Ullrich muscular dystrophy or Bethlem myopathy. All eight patients had consistent muscle biopsy results. Five cases were diagnosed with congenital myopathies, and three patients were congenital myasthenia were identified. Two patients were found to have neuropathies. The authors suggest that targeted NGS could be advantageous when applied in an early diagnostic algorithm for early onset NMDs to avoid invasive procedures and risk associated with general anaesthesia. Limitations were noted, that careful interpretation of variants is required due to possible incomplete penetrance, mosaicism or variable expression of disease.

Five hundred and four patients and eighty four family members from the Italian Network of Congenital Myopathies and the Italian Network of Limb-Girdle Muscular Dystrophy (LGMD) were studied by Savarese et al. (2016) using a NGS platform designated MotorPlex. MotorPlex is made up of 93 genes that are considered causes of nonsyndromic myopathies that typically cannot be diagnosed clinically. Eighty-five percent of the patients were Italian, and 60% were male. All patients were classified according to their primary clinical presentation as Limb Girdle Muscular Dystrophy (LGMD) (51%), congenital myopathy (CM) (32%), distal myopathy (3.8%), isolated hyperCKemia (3.4%), metabolic myopathy (MM) (1.2%), or other (8.6%). Most cases were sporadic, but 96 were familial. Bioinformatic filters took into account population frequency and current variant annotation. Variants were further scrutinized based on clinical presentation, age of onset, and segregation analysis in family members when appropriate. As a result, 218 (43.3%) cases obtained a diagnosis, and 160 patients had candidate variants identified that were interesting, but unproven. LGMD genes were responsible in 115 patients. In 30% of diagnosed cases the phenotype was atypical for that gene, expanding the understanding of the disease phenotype. The authors noted that some of the unsolved cases could be due to variants in genes not yet identified as causing NMD, and that ancillary tests such as CGH to detect copy number variants may be a necessary subsequent step. The conclusion of the study was that NGS may become a universal first tier step in diagnosing heterogeneous conditions such as NMD.

Nishikawa et al. (2017) studied the clinical utility of targeted NGS panels designed to identify inherited muscle diseases associated with muscular dystrophy (MD), congenital myopathy (CM), metabolic myopathy (MM), and myopathy with protein aggregations/rimmed vacuoles (MFM). They analyzed blood samples on 188 patients who had blood and muscle biopsy submitted to their lab in 2014 and 2015. Genes for the panels were identified from the 2013 gene table of monogenic neuromuscular disorders, and the target gene numbers were 65 (MD), 41 (CM), 45 (MM), and
The authors did not combine the genes into one large panel for cost and time efficiency purposes. To analyze the MD panel, 65 patients were recruited who had muscle biopsies and clinical findings suspicious for MD. Likely causative mutations were found in 30 patients (46%), and the genotype correlated with clinical findings. Sixty-five patients were analyzed for the CM panel. Causative mutations were found in 17 patients (26%), and an additional 13 patients had variants that were consistent with their phenotype, but not enough data existed in the literature to be able to designate the mutations as pathogenic. Ten patients were analyzed for the MM panel (30%). Causative mutations were found in three patients. The MM panel was evaluated in 48 patients who had histological profiles in biopsied muscle tissue consistent with MFM. Causative mutations were found in 12 patients (25%). Overall, the diagnostic yield was 33% for all 188 patients. The authors noted that additional genes and data that might have changed some variant classifications were found after the analysis was complete, so panels need to be updated on an ongoing basis. Their final conclusion was that a NGS panel in combination with histological, mRNA, and protein analysis is useful and efficient for determining a genetic diagnosis in patients with muscle disease.

As part of the North Carolina Clinical Genomic Evaluation by Next-Generation Exome Sequencing Study (NCGENES), Haskell et al. (2018) used WES to determine a genetic diagnosis in 93 patients with NMD. Patients were categorized into three groups based on clinical findings; primarily neuropathy, primarily myopathy, or complex. After DNA extraction and WES, variants were filtered through three different gene lists in order to compare diagnostic yield between different lists. A neuropathy list of 199 genes implicated in neuropathy phenotypes, a myopathy list of 181 genes, and a list of 482 genes implicated in NMD were used. Variants were then categorized using the American College of Medical Genetics and Genomics (ACMG) standards on pathogenicity. The overall diagnostic yield of WES for pathogenic or likely pathogenetic variants was 12.9%, and each gene list gave a different diagnostic yield. In some cases, family testing was performed to determine gene segregation and verify pathogenicity. The authors found that in patients with a clear neuropathy or myopathy, WES had the same diagnostic yield as the broader diagnostic test list. In patients with a complex phenotype, the broader list had the best diagnostic yield (9%) when compared to the neuropathy (4.9%) or myopathy (0%) diagnostic lists. Many of these patients had undergone muscle biopsy (42%), nerve conduction studies or electromyograms (86%), and genetic testing previously (68% overall and 20% had a multi- gene panel) and a definitive diagnosis had not been reached. The participants biopsy, electrodiagnostic testing, and prior genetic results were reviewed by three independent specialist reviewers who categorized the testing as informative or noninformative in the context of WES results. Sixty-three percent of the prior testing was considered informative, meaning that it correlated with the pathogenic variant identified in WES as a neuropathy, myopathy, or a complex disorder. In two cases, WES identified molecular diagnoses that directly impacted medical treatment. One patient had been clinically diagnosed with a chronic inflammatory demyelinating polyneuropathy, but WES demonstrated that the genetic diagnosis of Spastic Ataxia of Charlevoix-Saguenay, so unnecessary immunotherapy was avoided. The second patient had been thought to have a hereditary spastic paraplegia, but the genetic diagnosis was confirmed as a form of dopa-responsive dystonia, and after dopa therapy was started, she regained the ability to walk without assistance. The authors concluded that introducing genome-scale sequencing into the clinical workflow earlier may shorten the diagnostic odyssey, minimize invasive testing, and provide potential opportunities for clinical and investigational therapeutics for patients with NMD.

Wu et al. (2018) evaluated a group of 169 patients referred to a Canadian neuromuscular clinic with a NGS panel of 163-183 neuromuscular disease related genes. Patients included in the study had unexplained hyperCKemia, and had a CK value recorded more than 3X the usual upper limit. Patients were excluded if they were suspected of having an acquired or inflammatory cause for their symptoms like a statin induced myopathy, or had classic features of a single gene NMD, such as myotonic dystrophy or Duchenne muscular dystrophy. The American College of Medical Genetics (ACMG) guidelines were used to interpret variants, and variants identified in patients before the publication of the ACMG guidelines underwent re-interpretation in 2017. Pathogenic and likely pathogenic variants were considered in the calculation of the detection rate. Overall, pathogenic and likely pathogenetic variants were identified in 61 (36%) of patients. In the cohort that presented with muscle weakness (n=135), causative variants were found in 50 (37%). The detection rate in only pediatric patients (n=47) was 38%. In individuals with recurrent rhabdomyolysis (n=18), causative variants were found in six (33%). Sixteen patients had idiopathic hyperCKemia, and five (31%) had candidate variants identified. The authors noted that clinicians should be aware of the limitations of NGS testing, and that clinical examination and other diagnostic tools such as electromyography and muscle biopsy are still an important part of the diagnostic process. NGS may be subject to laboratory-specific limitations in detecting a variety of variant types including copy number variants, regulatory sequence variants, trinucleotide repeat expansions, and deep intrinsic mutations.

While the studies to date are promising, more evidence is needed to demonstrate that broad, multi-disease gene panels for neuromuscular disease should be the first tier test or can provide clinical utility beyond phenotype targeted gene panel tests.
Genetic Testing for Neuromuscular Disorders
UnitedHealthcare Commercial Medical Policy

Proprietary Information of UnitedHealthcare. Copyright 2019 United HealthCare Services, Inc.

Professional Societies

American Association of Neuromuscular and Electrodiagnostic Medicine (AANEM)

AANEM developed a position statement regarding the utility of genetic testing in neuromuscular disease (NMD) (Kassardjian et al. 2016). The goal of the statement was to generally endorse genetic testing as a component of diagnosing NMD, not to endorse a specific test or testing algorithm. The authors provided a consensus opinion from an expert panel that highlighted the benefits of genetic testing that included reduced time to diagnosis, avoidance of unnecessary testing, improved surveillance and monitoring, family testing and family planning, and better access to research and clinical trials. The authors note that recommendations and guidelines exist that direct the selection of appropriate genetic tests, and referenced AANEM guidelines for limb-girdle muscular dystrophies (Narayanaswami et al. 2014), congenital muscular dystrophy (Kang et al. 2015) and facioscapulohumeral muscular dystrophy (Tawil et al. 2015).

Muscular Dystrophies

Congenital Muscular Dystrophies (CMD)

CMD are disorders of muscle weakness and hypotonia that have an age of onset in the first two years of life. The prevalence is variable and not all geographies have epidemiological data. In the European populations about 1 in 100,000 people are affected. Serum creatine kinase (CK) levels are often, but not always, elevated. Muscle biopsy usually shows abnormalities such as necrosis, regenerating fibers, variable fiber size, and increased perimysial and enomysial connective tissue. The three major categories of CMD are collagenopathies, such as Ullrich CMD and Bethlem myopathy, merosinopathies (merosin-deficient CMD), and dystroglycanopathies. Collagenopathies involving muscular dystrophy are typically associated with the COL6A1, COL6A2, COL6A3 genes and have recessive as well as dominant forms of inheritance. The age of onset and severity can vary widely, but involves a combination of progressive muscle weakness, joint hypermobility, and contractures. Merosinopathies are also known as laminin g2 related CMDs are caused by defects in the LAMA2 gene and feature congenital weakness, elevated CK levels, and brain magnetic resonance imaging (MRI) evidence of white matter signal abnormalities. Dystroglycanopathies include Walker Warburg syndrome, muscle-eye-brain disease, Fukuyama congenital muscular dystrophy, and congenital muscular dystrophy 1C and 1D. Multiple genes are responsible for these disorders. Originally it was thought that each individual dystroglycanopathy was a distinct disorder that could be defined solely by clinical findings and mutations in a specific gene. However, it is now known that there can be significant phenotypic overlap in clinical findings and variable disease severity. Common symptoms remain, however, within dystroglycanopathies and typically have muscular dystrophy, elevated CK, abnormal muscle biopsy. Most have some degree of ocular and brain abnormality as well. (Kang et al. 2015, Bönnemann et al. 2014, Jobling et al. 2014 and Martin et al. 2005).

Ceyhan-Birsoy et al. (2015) examined the role of WES in identifying the cause of CMD in five Turkish CMD patients from three families who presented with early-onset rapidly progressive weakness without brain or eye abnormalities. Variants were filtered and analyzed by population frequency and the use of various bioinformatics tools to predict pathogenicity. All patients were found to have causative variants. In Family A, a mutation in the DYSF gene was identified, and pathogenicity was confirmed through re-examination of muscle biopsy for the absence of dysferlin, and immunohistochemistry for the dysferlin antibody confirmed the diagnosis. Families B and C had compound heterozygous mutations in the FKTN and ISPD genes. These genes are typically associated with brain and eye involvement, but these patients did not have cognitive ocular abnormalities. The authors highlight that the diverse clinical spectrum of CMD may prevent the accurate selection of targeted genes for analysis, and that an unbiased approach such as WES may be the best diagnostic tool.

O’Grady et al. (2016) researched the use of a targeted NGS panel vs. candidate gene sequencing on CMD patients who were identified retrospectively and prospectively through clinical records and the Institute for Neuroscience and Muscle Research Biospecimen Bank. Patients were identified from a 35-year period, and were included for study if there was evidence of muscle weakness and hypotonia in the first two years of life, and clinical features were consistent with CMD. Only the proband from a family was included when a sibling was identified in the cohort. Exclusion criteria included identification of structural changes in skeletal muscle diagnostic of a congenital myopathy, or if the case was identified from many years prior and re-contact could be considered insensitive. A total of 123 CMD patients were included. Patients underwent histological studies for laminin-a2, glycosylated a-dystroglycan, and collagen VI. Microarray analysis was performed, and candidate gene sequencing was driven by the histological classification and clinical phenotype and included analysis of FKRP, LARGEG, POMT1, POMT2, FKTN, and POMGNT1, the 3 collagen VI genes, LAMA2, SEPN1, LMNA, DNLM2, and ACTA1. This approach yielded a firm genetic diagnosis in 39 (32%) of patients, and two patients had a probable diagnosis. The remaining undiagnosed patients were offered additional genetic analysis. Targeted NGS was performed with a research based-45 gene panel, a commercial 336 gene panel, or WES. Twenty-eight patients, who were identified clinically from 1993 or later, consented to additional studies. Two patients had the 45 gene panel, four had the 336 gene panel, and one patient had both. The remaining 21 patients had WES. Eleven of this cohort had causative variants identified. Overall, 59 of the 123 (48%) probands had a genetic diagnosis established by this study. The authors felt this data supported NGS as a first-line tool for genetic evaluation of patients with CMD, with muscle biopsy reserved as a second-tier investigation.
Professional Societies

American Academy of Neurology (AAN) and the American Association of Neuromuscular and Electrodiagnostic Medicine (AANEM)

In many situations, CMD can be diagnosed clinically based on a characteristic phenotype, histological results, and other clinical tests. However, genetic diagnoses are beneficial to the patient, as they often enable physicians to provide more accurate prognoses and facilitate genetic counseling and family-planning discussions, and may enable patients to become more aware of future clinical trials for which they may be eligible. In 2015, Kang et al. published an evidence based guideline for the AAN and AANEM that included the use of genetic testing in the evaluation and diagnosis of CMD, and make the following recommendations:

- When available and feasible, physicians might order targeted genetic testing for specific CMD subtypes that have well-characterized molecular causes (Level C).
- In individuals with CMD who either do not have a mutation identified in one of the commonly associated genes or have a phenotype whose genetic origins have not been well characterized, physicians might order whole-exome or whole genome sequencing when those technologies become more accessible and affordable for routine clinical use (Level C).

Limb Girdle Muscular Dystrophies (LGMD) and Myofibrillar Myopathies (MFM)

Limb Girdle Muscular Dystrophies (LGMD) are a relatively rare group of diseases impacting up to .43 per 100,000 individuals. Incidence can vary by ethnicity (Narayanaswami et al. 2014). LGMD are characterized by proximal muscle weakness (shoulders, upper arms, pelvic area, and thighs), muscle wasting, and myopathic or dystrophic myopathological features (Kuhn et al. 2016). There are many subtypes of LGMD which can vary with age of onset, severity, and additional co-morbidities such as weakness of the heart muscles (Genetics Home Reference, 2018). There are at least thirty genes associated with LGMD; seven are autosomal dominant, and twenty-three are autosomal recessive (Kuhn et al. 2016). LGMD are classified according to inheritance pattern. LGMD1 are autosomal dominant, and LGMD2 are recessive. Further subtyping is delineated using a letter. In their most recent guidelines, the American Academy of Neurology (AAN) identified LGMD1A-LGMD1F, and LGMD2A-LGMD2S (Narayanaswami et al. 2014).

Myofibrillar myopathy (MFM) involves both proximal and distal muscles, and is characterized by slowly progressive weakness. Distal involvement is found in about 80% of those affected, and about 25% have significant proximal weakness as well. Peripheral neuropathy is found in about 20% of individuals and cardiomyopathy in 15-20%. Diagnosis relies on clinical findings, muscle histology, EMG, and nerve conduction studies (Selcen and Engel 2012). Some clinical features that may help differentiate MFM from other distal myopathies includes early development of foot drop, asymmetry in muscle weakness, and distinguishing EMG features (Narayanaswami et al. 2014).

Ankala et al. (2015) reported on the design and validation of several NGS panels at Emory Genetics Lab (EGL), developed to help expedite the diagnosis of NMD, including LGMD. The authors report that in their experience, clinicians must go through an extensive diagnostic workup in order to determine a small gene list to pursue for NMD, and patients may opt out of the process before a diagnosis is finalized. A combination of a targeted NGS panel and a targeted CGH test to identify copy number variants may reduce the burden of invasive tests. From October, 2009 to May, 2014, the authors analyzed the data for LGMD single gene and NGS/CGH panels to determine the difference in clinical utility. Exome analysis was also compared for 20 random patients to determine how well the exome covered the NMD genes in the study. In this timeframe, 343 LGMD single gene tests were ordered which included 250 sequencing tests and 93 CGH tests. The diagnostic yield was 19% overall. It was very low for CGH, with only eight positives of 93 tested. Ninety-six patients had a LGMD eleven gene NGS panel with a diagnostic yield of 26%. Eighty-one patients had a broad NGS panel that covered 41 genes for NMD, including genes that can cause overlapping phenotypes with LGMD, Emery-Dreifuss muscular dystrophy (EDMD), metabolic myopathies, congenital myopathies, dystrophopathies, and congenital disorders of glycosylation (CDG). The diagnostic yield of the NMD panel was 46%. The authors also compared WES to the LGMD and NMD panel. Based on the low coverage of WES for some key NMD genes, they concluded that WES would miss variants in five key LGMD genes, whereas the NMD panel would miss one.

Monies et al. (2016) studied a NGS panel of 759 genes associated with neurological disorders in patients from 50 families presenting with muscle weakness affecting the pelvic girdle and shoulder, of which 36 had an autosomal recessive form of inheritance. These families were identified through the Neurosciences Clinic of King Faisal Specialist Hospital and Research Centre, Saudi Arabia. Variants were analyzed and classified using the American College of Medical Genetics (ACMG) and Association for Molecular Pathology (AMP) guidelines. Thirty eight families (76%) received a genetic diagnosis from this study. Thirty four had LGMD related mutations, and four had novel genetic variants not usually associated with LGMD. Families with negative results had follow up WES, but no additional variants were found. The authors concluded that their panel was sensitive, cost-effective, and rapid; significantly assisting the clinical practice.

Kuhn et al. (2016) examined the clinical utility of a NGS panel for LGMD in a group of fifty-eight German patients who were suspected to have a LGMD. The panel focused on 23 genes known to cause LGMD and 15 genes known to cause...
a similar phenotype. The age of onset ranged from 3 to 63 years of age. Four patients had autosomal dominant forms of disease, and sixteen patients had affected siblings, suggesting autosomal recessive. X-linked inheritance was most likely in two patients. The remaining patients were considered to have sporadic cases. All patients had a muscle biopsy that confirmed myopathic or dystrophic changes, but LGMD immunohistochemistry or immunoblotting was not possible on the remaining sample. NGS was performed on the 38 targeted genes with an average 20X coverage. All pathogenic variants and VUS were confirmed by Sanger sequencing. Disease causing mutations that explained the phenotype were found in 19 of 58 patients (33%). In 28% of patients with autosomal recessive disease, only a single pathogenic mutation was found. Additional sequencing and copy number variant analysis on the relevant gene to identify another pathogenic mutation, consistent with recessive inheritance, was negative. VUS were found in 10% of patients, and the remainder had no mutations identified.

In the United Kingdom, individuals suspected to have LGMD are evaluated at a central clinical known as the UK LGMD clinic. Harris et al. (2017) reported that in this population a genetic diagnosis is achieved in 63% of patients using standard clinical approaches, and her team explored the use of WES to increase the diagnostic yield in the remaining third of patients. They examined 104 affected individuals from 75 families. Patients had already undergone targeted genetic testing with an average of eight genes screened, as well as other extensive clinical investigations such as muscle biopsy and electrodagnostic testing. In some cases, the ongoing clinical analysis had taken place over a decade or longer without reaching a definitive diagnosis. The WES genetic variants were filtered and analyzed against a list of known muscle disease genes, and if no variants were found, the scope of variant analysis was widened to include variants in novel genes. The genetic findings, clinical features, muscle MRI and muscle biopsy results were then integrated at a multidisciplinary meeting to reach a consensus as to whether variants were likely to be disease causing. Overall, the WES group achieved a diagnostic yield of 37%. By comparison, 91 individuals from 84 families were tested using the standard genetic testing procedures in place in the clinic during the 24-month investigation period. This standard genetic testing group had a diagnostic yield of 33%. The authors concluded that earlier application of WES in the diagnostic pathway would reduce the time to diagnosis and may also reduce the costs incurred by ongoing investigations, as well as affording opportunities for detection of low level mosaicism and novel disease gene identification.

Professional Societies

American Academy of Neurology (AAN) and the American Association of Neuromuscular and Electrodiagnostic Medicine (AANEM)

When presented with a patient with a possible LGMD or other distal myopathies like MFM, the AAN and AANEM (Narayanaswami et al. 2014) recommend referring patients to a specialized neuromuscular center for evaluation, management and diagnosis because of the complex nature of NMDs and the need for a multi-disciplinary team. They recommend utilizing an approach focused on a clinical evaluation to narrow down the possible forms of LGMD or other muscular dystrophies. Their evidence based review found that utilizing information such as pattern of muscle weakness, hypertrophy or atrophy of certain muscle groups, cardiac or respiratory involvement, muscle biopsy findings, electromyogram (EMG) results, and creatinine kinase (CK) serum levels, can narrow down the differential to just a few disorders. Verification of the specific disorder through genetic testing is recommended, as this will direct the most efficient care path and identify necessary prophylactic interventions, such as the correct timing for placing a pace maker, or the monitoring interval for cardiorespiratory function.

The following phenotype and genotyping recommendations (evidence level B, expert consensus based on moderate evidence) were provided for those with limb girdle weakness and probable autosomal dominant inheritance:
- If cardiomyopathy, respiratory involvement, EMG with myotonic or “pseudomyotonic” discharges, foot drop, and myofibrillar myopathy on muscle biopsy are present; test for mutations in the genes desmin (LGMD1E), myotilin (LGMD1A), DNAJB6 (LGMD1D), ZASP, filamin C, oB-crystallin, and titin.
- If rippling muscles and percussion-induced rapid contractions are present; test for mutations in the caveolin-3 gene (LGMD1C).
- If early humeroperoneal weakness, contractures (neck, elbows, knee, ankle), and cardiomyopathy are present; test for mutations in the lamin A/C gene (LGMD1B or AD-EDMD).
- If distal weakness, myotonic discharges on EMG, past or family history of Paget disease, frontotemporal dementia, or motor neuron disease are present; test for mutations in VCP (hIBMPFD).
- If no clinical features suggest a specific form of dystrophy, or if initial genetic testing is not informative, perform a muscle biopsy to direct further genetic testing (such as immunohistochemistry/immunoblotting for various sarcolemmal proteins, calpain-3, or features of myofibrillar myopathy) or to exclude an alternative diagnosis (e.g., a metabolic myopathy, mitochondrial myopathy, congenital myopathy, or inflammatory myopathy).

The following phenotype and genotyping recommendations (evidence level B, expert consensus based on moderate evidence) were provided for those with limb girdle weakness and probable autosomal recessive inheritance:
- If scapular winging but no calf hypertrophy, and normal cardiorespiratory function are present; test for mutations in calpain-3 (LGMD2A). Patients of English, French, Spanish, Italian, Portuguese, or Brazilian descent may have a higher pretest probability of this disorder.
• If calf atrophy and weakness (i.e., inability to stand on toes) are present; test for mutations in anoctamin-5 (LGMĐ2L) or dysferlin (LGMĐ2B).
• If the onset of symptoms is in the teens or early twenties or the patient is from Asia, clinicians should assess for dysferlin mutations first and, if negative, test for anoctamin-5 mutations. If the onset of symptoms is in the 30s or later or the patient is of English or northern European ancestry, clinicians should assess for anoctamin-5 mutations first and, if negative, test for dysferlin mutations.
• If muscle biopsy immunohistochemistry showing reduction in 90 α-, β-, γ-, or δ-sarcoglycans is present; test for mutations in the sarcoglycan genes, SGCA, SGCB, SGCG, and SGCD (LGMĐ2C–2F).
• If the patient is of Hutterite descent; test for mutations in TRIM32.
• If scapular winging, calf hypertrophy, and early cardiorespiratory involvement are present; test for mutations in FKRP.
• If mental retardation is present; test for mutations in genes that cause primary or secondary deficiency of α-dystroglycan, POMT1, POMT2, FKTN, FKRP, LARGE1, POMGNT1, and ISPD1 genes (LGMĐ2K, LGMĐ2M, LGMĐ2N, LGMĐ2O, and LGMĐ2P).
• If epidermolysis bullosa or pyloric atresia; test for mutations in plectin, PLEC.
• If no other specific clinical features are identified, or the muscle biopsy does not inform genetic testing, clinicians should perform a dried blood spot test for α-glucosidase (acid maltase) deficiency or Pompe disease.

The following phenotype and genotyping recommendations (evidence level B, expert consensus based on moderate evidence) were provided for those with limb girdle weakness and probable X-linked inheritance:
• If male, perform testing for mutations in the dystrophin (DMD) gene.
• If female, test for DMD gene mutations or perform a muscle biopsy and immunostaining for dystrophin to assess for a mosaic pattern of staining. If positive, confirm diagnosis with DMD gene testing.

The following phenotype and genotyping recommendations (evidence level B, expert consensus based on moderate evidence) were provided for those with humeroperoneal weakness and probable autosomal dominant inheritance:
• If early cardiac involvement and no joint laxity are present; perform genetic testing for mutations in the lamin A/C gene (AD-EDMD, LGMD1B).
• If joint laxity, protuberant calcaneus, and no cardiac involvement are present; test for mutations in the collagen VI gene (Bethlem myopathy).

The following phenotype and genotyping recommendations (evidence level B, expert consensus based on moderate evidence) were provided for those with humeroperoneal weakness and probable autosomal recessive inheritance:
• If congenital onset, joint laxity, protuberant calcaneus, and no cardiac involvement are present; test for mutations in the collagen VI gene (Ullrich myopathy).

The following phenotype and genotyping recommendations (evidence level B, expert consensus based on moderate evidence) were provided for those with humeroperoneal weakness and probable X-linked inheritance:
• If joint laxity, protuberant calcaneus, and no cardiac involvement are present; test for mutations in the emerin (EMD) gene.

If humeroperoneal weakness and suspected muscular dystrophy with early cardiac involvement and no joint laxity are present, and there are no mutations found in the lamin A/C or emerin gene, clinicians should perform muscle biopsy to delineate characteristic abnormalities that direct further genetic testing (evidence level B, expert consensus based on moderate evidence).

If late adult onset of index finger and wrist extensor weakness, followed by atrophy and weakness of hand muscles, and muscle biopsy showing rimmed vacuoles are present; a diagnosis of Welander distal myopathy is most likely and should be confirmed through genetic testing for Welander myopathy (evidence level B, expert consensus based on moderate evidence).

The following phenotype and genotyping recommendations (evidence level B, expert consensus based on moderate evidence) were made for patients with suspected distal muscular dystrophy and probable autosomal recessive inheritance:
• If early onset of calf weakness is present; test for mutations in the anoctamin-5 and dysferlin genes.
• If early onset (<30 years of age) of progressive foot drop is present in individuals who are of Japanese or Middle Eastern Jewish descent; test for GNE mutations (AR-hIBM).
• If none of the clinical features above are noted, clinicians should perform a muscle biopsy to direct further genetic testing.

In patients with muscular dystrophy who have proximal as well as distal weakness, clinicians should use specific clinical features (e.g., rippling muscles, cardiomyopathy, atrophy of specific muscle groups, irritability on EMG) and biopsy features (myofibrillar myopathy (MFM), reduction of emerin immunostaining, presence of rimmed vacuoles) to
guide genetic testing, which may include mutations in the genes causing the various forms of MFM; LGMD2B (dysferlin), LGMD2L (anoctamin-5), LGMD2J (titin), LGMD1C (caveolin-3), and EDMD (emerin and lamin A/C).

In patients with suspected muscular dystrophy in whom initial genetic testing, muscle biopsy, and dried blood spot test for Pompe disease do not provide a diagnosis, clinicians may obtain genetic consultation or perform parallel sequencing of targeted exomes, Whole-Exome Sequencing, Whole-Genome sequencing, or Next-Generation Sequencing to identify the genetic abnormality (Level C, expert consensus based on modest evidence).

Metabolic Myopathies
Metabolic refers to the chemical processes in the body that utilize nutrients and energy to provide healthy functioning and growth. Metabolic myopathies are genetic disorders in which the metabolic processes for the muscles have been interrupted and can result in muscle weakness, exercise intolerance, or muscle pain. There are three primary categories of metabolic myopathies that include glycogen-storage diseases (GSD), disorders of fatty oxidation, and mitochondrial myopathies (Suftka et al. 2017 and Tarnopolsky MA 2016).

Glycogen Storage Diseases
Glycogen storage diseases (GSDs) that may cause metabolic myopathies and have overlapping symptoms include GSD type 2 (Pompe’s disease), GSD type 3 (Debrancher Deficiency), GSD type 4 (Andersen’s disease), GSD type 5 (McArdle’s disease), GSD type 7 (Tarui’s disease), and GSD type 9 (Phosphorylase Kinase Deficiency). Identifying the correct diagnosis is important because some GSDs have treatment available, such as Late Onset Pompe Disease (Lilleker, et al. 2018). Symptoms often start in the second or third decade of life with muscle cramps that occur during the first few minutes of exercise. Many individuals may not see their physician at the onset of symptoms because they avoid exercise or they modify exercise by starting off slow, then ramping up activity as aerobic metabolism takes over and blood born energy is delivered to the muscle. In particular, individuals with McArdle disease report that exercise gets easier after a few minutes of activity, known as the second wind-phenomenon, and feel better and less symptomatic after a high carbohydrate meal. Patients with other forms of metabolic myopathies do not experience a second wind phenomenon and report that they feel worse with a high carbohydrate meal and better after fasting. Some patients will experience dark urine due to the presence of muscle derived proteins. The classic diagnostic test is a forearm exercise test included pre-and post-exercise measurements of lactic acid and ammonia. This has a very high sensitivity and specificity for the presence of a glycogenic defect, with the possible exception of phosphorylase b kinase deficiency, which can be further evaluated with an aerobic cycling test. Serum CK is usually elevated in McArdle disease, but is typically normal in other glycogen storage diseases. EMG is often normal, and muscle biopsy may show high glycogen, absent phosphorylase, or absent phosphofructokinase. If these tests suggest McArdle syndrome, or muscle biopsy is suggestive of a particular GSD, targeted genetic testing is suggested to confirm the diagnosis. For example, on muscle biopsy, central cores suggest RYRI or CACNA1S mutations, abnormal dystrophin staining suggests a dystrophinopathy, ragged red fibers point to a mitochondrial disorder, and membrane bound glycogen suggests Pompe disease. Otherwise, NGS panels may be beneficial in reaching a diagnosis (Lilleker et al. 2018 and Tarnopolsky 2016).

Wang et al. (2013) examined the clinical validity of using a massively parallel sequencing test for 16 genes related to glycogen storage diseases (GSD). GSD result from enzyme defects in the glycogen metabolism pathway resulting in hypoglycemia and hepatomegaly. Muscle forms of GSDs result from a similar defect in the muscle leading to exercise intolerance, muscle weakness, and muscle cramps. Diagnosis typically depends on biochemical test results, liver or muscle biopsy. Single gene testing based on symptoms is the standard genetic diagnostic approach. The overlap in symptoms and genetic heterogeneity of patients making picking the right test or gene difficult. Seventeen samples from patients with clinical, histochemical, and/or enzymatic findings of a GSD, but no molecular diagnoses were used for the analysis. Seven samples with known mutations were used for positive controls. All mutations were verified with Sanger sequencing. A causative variant was found in 11 of 17 (65%) of patients, and was found in all of the controls. The authors concluded that this technology aids in the diagnostic testing of clinically heterogeneous disorders.

The genetic lab at Centro de Diagnóstico de Enfermedades Moleculares in Madrid, Spain, reported on its experience with NGS for GSD (Vega et al. 2016). Blood samples from 47 patients suspected of having a GSD were analyzed. Two methods were employed. Sixteen patients were analyzed using a panel of 111 GSD related genes. Twelve of these patients plus an additional 39, were analyzed by the TrueSightOne gene panel which represents all of the known disease causing genes described in the Online Inheritance of Man (OMIM) database as of 2013. Variants were filtered by population frequency, phenotype, and inheritance pattern. Genes with potentially pathogenic mutations were assessed in the context of the patient phenotype according to OMIM criteria. Variants that met these criteria were confirmed by Sanger sequencing. In the first testing group, five of 12 patients received a genetic diagnosis (30%). In the second group, 18 of 43 patients were found to have pathogenic mutations. Fourteen were in GSD related genes and four in non-GSD genes. Eleven mutations had never been reported before and were confirmed through segregation analysis. The authors concluded that the combination of clinical findings, biochemical test results, and NGS can provide an efficient and accurate means of making a genetic diagnosis.
Lévesque et al. (2016) studied the clinical utility of a targeted NGS panel to diagnose Late Onset Pompe Disease (LOPD). Pompe disease is an autosomal recessive disease caused by a defect in the GAA gene, resulting in a deficiency of acid alpha-glucosidase. The classic infantile form presents early in life with general muscle weakness, cardiomyopathy, and respiratory distress. The disease is treatable with enzyme replacement therapy, but without treatment, it is a fatal disease. LOPD can present at any age after infancy with limb-girdle weakness, but is most commonly identified in adulthood. Patients can also have rigid spine syndrome, scoliosis and low body mass, and nocturnal hypoventilation due to diaphragmatic weakness. Because of the low incidence of LOPD and the overlap of symptoms with other neuromuscular disease, this treatable condition is often not diagnosed until 10 years after the first onset of symptoms. The authors developed a NGS panel comprised of 77 genes representing muscle disorders with a clinical overlap with LOPD. Twenty Pompe patients with known mutations were used to determine the sensitivity of the assay, and all mutations were accurately identified. Positive gene results were confirmed by measuring GAA activity. GAA activity level was measured using tandem mass spectrometry, and 15 Pompe patients were used as positive quality controls and 49 healthy controls were used to establish normal GAA activity. This pilot study included 34 patients suspected of having an inherited muscle disorder, but in whom the etiology couldn’t be determined. Seven pediatric patients and 27 adult patients were included. Most (71%) had undergone a muscle biopsy, and 15 (44%) had at least one single gene test performed, but still did not have a diagnosis. Using the NGS panel, a genetic diagnosis was found in 32% of patients. One case of LOPD was found, confirmed by GAA activity testing. The remaining cases were various forms of LGMD, including three patients with atypical presentations. The authors concluded that targeted muscle gene panels utilized as a first tier diagnostic test might reduce the time to diagnosis. They also note that challenges exist with the high number of VUS identified and the limited performance of bioinformatics tools for analyzing copy number variants, but anticipate that these issues will be resolved as NGS technology continues to advance.

Johnson et al. (2017) utilized WES to determine the diagnostic yield of this technology for identifying LOPD in a cohort of 606 European patients with limb-girdle weakness. Their ages ranges from 4 to 88 years old, and were 46% female and 56% male. WES from blood was performed by the Genomics Platform at the Broad Institute of Harvard and MIT, and variants were filtered using a list of 169 genes associated with limb-girdle weakness. The biological relevance of the variants identified within the GAA gene was determined by considering the population frequency, deleteriousness of the variant predicted by various bioinformatics tools, ClinVar reports of pathogenicity and the published literature. The authors reported that the overall diagnostic rate for all muscle disease was still under review at the time of publication, but appeared to be 49% overall. Twelve cases of LOPD were identified in this study, in eight study participants and four siblings. Four of the ten gene variants found had not been reported previously. The authors noted that GAA activity levels are typically analyzed using dried blood spot analysis, but for the subset of patients with elevated creatinine kinase and limb-girdle muscle weakness, the testing was not accurate. Nearly 8% had abnormal GAA activity levels, but only 2.4% were confirmed to have LOPD. They also highlighted one case of a woman with symptom onset in her fifties who had normal, but slightly lower GAA activity level was measured using tandem mass spectrometry, and 15 Pompe patients had undergone a muscle biopsy, and 15 (44%) had at least one single gene test performed, but still did not have a diagnosis. Using the NGS panel, a genetic diagnosis was found in 32% of patients. One case of LOPD was found, confirmed by GAA activity testing. The remaining cases were various forms of LGMD, including three patients with atypical presentations. The authors concluded that targeted muscle gene panels utilized as a first tier diagnostic test might reduce the time to diagnosis. They also note that challenges exist with the high number of VUS identified and the limited performance of bioinformatics tools for analyzing copy number variants, but anticipate that these issues will be resolved as NGS technology continues to advance.

Mori et al. (2017) examined the analytical and clinical validity of WES for identifying early and late onset Pompe disease. The disease is treatable by enzyme replacement therapy, but optimal outcomes are dependent on a swift and accurate diagnosis, which is challenging in the late onset form. The authors analyzed WES data in 93 patients with confirmed Pompe disease and known G44 mutations identified by Sanger sequencing. WES accurately identified both G44 variants in 77 (83%) of patients. One variant was missed in 14 (15%) and both were missed in two (2%). One patient had a complex indel that was incorrectly identified by WES due to misalignment. The authors concluded that WES may not be the most accurate approach to diagnosing Pompe disease, and clinicians should consider more targeted and specific testing in individuals with myopathy, respiratory failure, or other subtle symptoms.

Savarese et al. (2016) described the clinical validity of a targeted NGS panel (MotorPlex) for NMD in 504 patients with Limb Girdle Muscular Dystrophy (LGMD) (51%), congenital myopathy (CM) (32%), distal myopathy (3.8%), isolated hyperCKemia (3.4%), and metabolic myopathy (MM) (1.2%) and other (8.6%). Within this subset of patients are 275 individuals with a clinical presentation of LGMD and hyperCKemia that includes LOPD within the differential diagnosis reported in a subsequent publication focusing on LOPD (Savarese et al., 2018). Ultimately, 16 patients from nine unrelated families were diagnosed with LOPD. All patients had the common c. 32 13T>G variant in the GAA gene with a second, already known mutation on the other allele. The symptoms in this cohort were primarily proximal weakness and fatigability. Exercise intolerance, myalgia, and contractures were less common. Some patients had atypical symptoms that likely confounded the clinical diagnosis, such as dysphagia, pseudohypertrophy, and calf hypertrophy. The authors concluded that with decreasing costs and technological improvements, NGS panels are likely to become important in first tier diagnostic testing in the near future.

Fatty Acid Oxidation (FAO) Disorders

Disorders of fatty acid oxidation (FAO) can result in three different presentations; hepatic, sudden infant death from hypoketotic hypoglycemia from catabolic events or cardiac disease, and a mild adult onset form. The hepatic form is...
severe, often lethal, and is triggered in the neonatal or infancy time period by a catabolic state, such as from frequent infections. Infants may also present with dilated or hypertrophic cardiomyopathy. These conditions may be treatable through dietary restriction of long chain triglycerides and supplementation of medium chain triglycerides, so are included in newborn screening programs. Diagnosis can be tricky, however, and may require in vivo loading tests using sunflower oil and phenylbutyrate, or fasting tests. Mass spectrometry of the acyl carnitine pathway remains the gold standard for newborn screening and other diagnostic tests. Enzyme testing in lymphocytes can confirm the diagnosis, and genetic testing of the specific gene can identify the molecular problem (Houten et al. 2016). The adult onset or mild form presents with exercise-induced myalgia, and may have pigmenturia within 24 hours of exercise due to rhabdomyolysis and delayed onset of muscle soreness. Symptoms may result from prolonged fasting, or prolonged exercise, especially if illness is present, too. In affected children it common to see pigmenturia during fever or fasting because of illness, or when vomiting. The exercise induced symptoms are not noted until their teen years. In these individuals, CK levels are usually normal except during rhabdomyolysis. Hyperkalemia and hypoketotic hypoglycemia can occur during rhabdomyolysis as well, and in some this might result in kidney failure. The best diagnostic test for individuals suspected of having a mild fatty oxidation disorder is a mass spectrometry analysis for acyl carnitine. A false negative can happen if the testing is performed during a non-stressed period. Targeted genetic testing can confirm a diagnosis based on the mass spectrometry results, and if acyl carnitine results are not informative, or targeted genetic testing is negative, panel genetic testing may yield additional information. For example, LPIN1 deficiency can cause rhabdomyolysis with fever or other illness, but does not cause exercise related symptoms (Tarnopolsky 2016). In general, most FAO disorders are diagnosed through mass spectrometry and other metabolic testing, but in some cases additional genetic testing, including exome or genome analysis, may help diagnosis unexpected phenotypes (Houten et al. 2016).

Sudden unexpected death in infancy (SUDI) is commonly attributed to accidents, infection, heart defects, child abuse, and metabolic disease. FAO disorders can lead to SUDI during long fasting or infection, and accounts for 5% of cases. Newborn screening allows for identification of disease before symptoms, but some may remain undetected. Yamamoto et al. (2015) examined the utility of NGS in SUDI post-mortem analysis in Japan for FAO disorders. Fifteen cases were selected where the infant did not have any identified cause of death after a typical post-mortem analysis. The ages ranged from 0 days to 11 months. All were born before 2014 and did not have screening by tandem mass spectrometry for FAO disease. DNA analysis was performed on preserved white blood cells, and was a focused analysis of 13 genes associated with FAO disease. Positive results were confirmed by Sanger sequencing. One patient was found to have carnitine palmitoyltransferase (CPT) II deficiency. She was born full term and had no identified issues until she died at age 11 months after an episode of fever and vomiting. Histological examination of the liver resulted in a diagnosis of Reye’s like syndrome due to the presence of diffuse and distinctive vacuoles, which were also found in the kidney and heart. Parental testing confirmed that her parents were carriers of CPT II deficiency. Four other infants were found to have at least one copy of a FAO related genetic variant that was predicted to alter protein function, consistent with being a carrier. The authors also tested post-mortem blood samples by tandem mass spectrometry and confirmed the case of CPT II deficiency. They also identified two other cases that had increases in the long-chain acylcarnitine, but was considered to be a false positive by the authors because the genetic analysis was negative. The authors concluded based on this cohort that metabolic autopsy with NGS was valuable in evaluating the cause of SUDI.

Valencia et al. (2016) examined the utility of a customized NGS panel of 26 genes in twelve pediatric patients with acute liver failure with elevated blood molar lactate/pyruvate of indeterminate etiology. The patients were selected from a retrospectively identified cohort of 74 individuals with acute liver failure because their fixed and frozen liver samples were available for additional analysis, and had indeterminate etiology. The 26 genes included 15 nuclear genes involved in mitochondrial disorders, and six genes associated with FAO defects. Hepatic DNA was analyzed. Five patients were found to have significant genetic variants. Two patients had genetic variations in the RRM2B gene, not previously associated with acute liver failure. Both had patchy micro and macro-vesicular steatosis and reduced respiratory chain complex activity, and good post-liver transplant outcomes. One infant with severe lactic acidosis was a compound heterozygote for variants in ACAD9, associated with isolated complex I deficiency. Two patients had abnormal mitochondria by electron microscopy, and VUS in the POLG and DGUOK genes. Both had developed acute liver failure after drug exposure. The authors conclude that targeted NGS helped expand the understanding of genes involved in the spectrum of pediatric acute liver failure.

Limited data exists on the clinical utility of multi-gene sequencing panels for the diagnosis of FAO disorders.

Mitochondrial Myopathies (MM)

Mitochondria are organelles, and hundreds to thousands of mitochondria are found in each cell. Mitochondrial Myopathies (MM) are a group of genetic disorders with a primary defect in electron transport chain function, resulting in abnormal energy production from fat and carbohydrate oxidation pathways. Symptoms such as muscle weakness, muscle cramping, or pain often appear during periods where these pathways are relied upon most, such as endurance sports activities, illness, or periods of fasting. The mitochondria have their own DNA (mtDNA) that exists in a double stranded circle, and multiple copies of mtDNA can occur in each mitochondrion. mtDNA codes for about 37 genes, but...
the transcription, translation, and function of the mitochondrial DNA is dependent on a number of nuclear genes. Therefore, MM are a constellation of diseases that can have their root cause in either the mitochondrial or the nuclear DNA (Tarnopolsky 2016).

Because each cell can have multiple copies of normal and abnormal mitochondria, called heteroplasmy, mitochondrial based diseases are known to have a wide range of phenotypic expression. DNA testing can be challenging as a result, but the advent of NGS allows for better detection of heteroplasmy in blood, ranging from 1-10% depending on the methodology and tissue type (Parikh et al. 2015).

The prevalence of most types of MMs is unknown; however, mitochondrial disease is one of the most common groups of genetic diseases with a minimum prevalence of greater than 1 in 5000 in adults. Examples of MM with neuromuscular manifestations include, but are not limited to, the following:

- **Kearns-Sayre syndrome (KSS)** is a mitochondrial disorder characterized by the onset of progressive external ophthalmoplegia (PEO) younger than age 20, pigmentary retinopathy, heart block, and cerebellar ataxia. There is wide phenotypic expression and some may experience myopathy, deafness, dysphagia, hypoparathyroidism, diabetes, and dementia (Chinnery 2014).
- **Chronic progressive external ophthalmoplegia (CPEO)** is characterized by external ophthalmoplegia, bilateral ptosis, and mild proximal myopathy (Chinnery 2014). This is often the canonical symptom representing mitochondrial disease. It can be caused by a mutation or large rearrangement of mitochondrial DNA that accumulate throughout life in the skeletal muscle and cause disease. Nuclear genes that interact with the mitochondria such as *SPG7* have also been implicated in the disease (Pfeffer et al. 2014).
- **Progressive external ophthalmoplegia (PEO)** is part of a spectrum of disorders, including CPEO, and has an unknown prevalence. Similar disorders include ataxia neuropathy spectrum and KSS. They are typically clinical diagnoses that are made through history and examination. Imaging studies, blood and cerebral spinal fluid tests, electromyography of the limbs, and muscle biopsy can help refine the differential diagnosis if there is doubt. About 50% of PEO is inherited and caused by mutations in mtDNA and nuclear genes such as *POLG1, POLG2, ANT1, Twinkle, RRM2B, DNA2*, and *OPA1*. The remaining 50% is sporadic, and mtDNA testing often shows an accumulation of a single large mtDNA deletion. The size of the deletion may be associated with disease severity (McCleland et al. 2016).
- **MERRF** (myoclonic epilepsy with ragged red fibers [RRF]) is a multisystem disorder with a childhood onset that presents with myoclonus followed by generalized epilepsy, ataxia, weakness, and dementia. Additional findings can include hearing loss, short stature, optic atrophy, cardiomyopathy, pigmentary retinopathy, and lipomatosis. Diagnosis is usually clinical and based on the presence of four primary features; myoclonus, generalized epilepsy, ataxia, and RRF identified in a muscle biopsy. Genetic testing can be used to confirm a diagnosis, and often the genetic variants in MERRF are found in white blood cells. However, because of mitochondrial heteroplasmy, it is possible that the mutation is not detectable in blood and another tissue type should be tested if blood is negative (DiMauro and Hirano 2015).
- **MELAS** (mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes) is a multisystem disorder with onset typically in childhood although it can begin at any age. The first symptoms can be exercise intolerance or proximal limb weakness, followed by generalized tonic-clonic seizures, recurrent headaches, anorexia, and recurrent vomiting. Seizures manifest as stroke like episodes which may involve transient blindness or hemiparesis. Over time, the recurrent seizures may result in deafness, impaired motor abilities, and vision and intellectual capabilities. Diagnosis is usually clinical and based on presentation of stroke-like episodes, typically before age 40 years, encephalopathy with seizures and/or dementia and mitochondrial myopathy, evidenced by lactic acidosis and/or RRF on muscle biopsy. In addition, two of the three following symptoms are also required for diagnosis; normal early psychomotor development, recurrent headache, or recurrent vomiting. Genetic testing can be used to confirm a diagnosis (DiMauro and Hirano 2013).
- **Leigh syndrome** has onset of symptoms in the first year of life, often after a viral infection. Clinical manifestations include hypotonia, spasticity, movement disorders, cerebellar ataxia, and peripheral neuropathy. Cardiomyopathy may occur as well. About 50% of children die by age 3 as a result of respiratory or cardiac failure. A diagnosis is usually accomplished clinically through characteristics features on brain imaging, typical neuropathologic changes, and similar symptoms in an affected sibling. A diagnosis can be confirmed through mtDNA or nuclear DNA testing (Thorburn et al. 2017).
- **NARP** (neurogenic muscle weakness, ataxia, and retinitis pigmentosa) first appears in childhood or early adulthood, and characterized by proximal neurogenic muscle weakness with sensory neuropathy, ataxia, and pigmentary retinopathy. Learning disabilities may also be present. Diagnosis can be suspected through clinical means, but may require DNA testing to confirm a diagnosis. The suggested approach is to look for two common variants that cause NARP in the *MT-ATP-6* gene, and if negative consider mtDNA genome sequencing (Thorburn et al. 2017).

Select articles below review the experience of researchers and clinical labs with targeted NGS and WES and the clinical validity for diagnosing mitochondrial diseases.
Calvo et al. (2012) reported on their initial experience with the MitoExome, a NGS assay that includes sequencing of the entire mtDNA genome and about 1000 nuclear genes encoding mitochondrial proteins. Forty-two unrelated patients with clinical evidence of mitochondrial disease who did not have a prior positive genetic test underwent MitoExome sequencing. Variant interpretation focused on rare, known pathogenic variants in the Human Gene Mutation Database (HGMD), variants annotated as pathogenic in the MitoMap database when found at >10% heteroplasm, and mtDNA structural defects and rearrangements. Of the 42 patients, 23 (55%) had at least one nuclear or mtDNA gene variant that was suspect as disease causing. Ten were in known disease related genes. Nine of these patients were confirmed using additional testing methods, and it was noteworthy that the clinical phenotype of these patients was not sufficient by itself to identify the underlying gene ultimately found to be responsible. The tenth patient had compound heterozygous mutations in a gene that did not fit with the clinical presentation, biochemical results, or consanguineous relationships in his family. Thirteen patients had variants in nuclear genes not previously linked to disease. Follow up confirmation studies were able to confirm the pathogenicity in two of the genes. Finally, one patient had a large mtDNA deletion. The authors concluded that this pilot study of the MitoExome highlights the promise of NGS for mitochondrial disease, but also demonstrates the challenges in variant interpretation and the need for additional validated databases and interpretation standards.

DaRe et al. (2013) examined the use of a 477 gene targeted NGS panel in 148 patient samples submitted to their lab who were suspected of having a mitochondrial disorder. Clinical information was limited in these patients, and the most common findings reported on the lab requisition included developmental delay and hypotonia. About 36% of patients had abnormal muscle biopsy or biochemical testing reported, and several patients reported previously negative mtDNA sequencing or negative single gene nuclear DNA testing. The physicians who submitted the samples were considered to be mitochondrial disease experts by the authors. Overall, primary mitochondrial defects were confirmed in only four patients. Variants that were highly likely to be disease causing were found in 12 genes in 13 patients. Eleven variants had been previously published as disease causing, but the authors were not willing to conclude the same without conducting functional studies. Additional variants of interest that could be pathogenic were identified in 45 genes. Confirmation studies such as family segregation analysis or other tests could not be conducted fully on this cohort, and the authors felt that better standards for interpretation of significant variants are needed. They concluded that the current standard diagnostic algorithm for diagnosing mitochondrial disease needs improving, that NGS assays would have better sensitivity if more genes are targeted and that in the future, WES may have adequate coverage to be a good diagnostic tool.

The role of WES in the diagnosis of mitochondrial disease was explored by Wortmann et al. (2015). The Nijmegen Centre for Mitochondrial Disorders (NCMD) referred 109 patients between December 2011 and June 2013 for WES. Patients were included that met three criteria; high degree of suspicion of mitochondrial disease by the referring physician, absence of mtDNA deletions or point mutations, and absence of copy number variations by microarray. The most common symptoms reported were intellectual disability, developmental delay, myopathy/exercise intolerance, and mitochondrial dysfunction in muscle. Retrospectively the cohort was divided into high, medium, and low groups based on the clinical degree of suspicion of mitochondrial disease. Sequencing was performed and variants were filtered first to look at 238 genes known to be associated with mitochondrial disease. If no variants of interest were identified in this panel, the whole exome was examined. A pathogenic mutation explaining the clinical findings was identified in 42 (39%) patients. The highest diagnostic yield was in the high suspicion group, in which a genetic diagnosis was reached in 24 of 42 patients (57%). Sixteen had a mutation in a known mitochondrial disease gene on the targeted gene panel, and eight had a mutation in a gene outside of the targeted panel. The authors concluded that WES has an advantage over a targeted NGS panel because it allows for an analysis beyond mitochondrial genes if needed, but noted that at the time of publication, WES has poorer coverage than a targeted NGS panel.

The Neurological Institute C. Besta in Milan, Italy reported on its experience using a combination of targeted NGS and WES in a cohort of 125 patients strongly suspected to have mitochondrial disease (Legati et al. 2016). The patients were divided into respiratory chain complex groups based on their histological findings, mtDNA testing, and biochemical testing results; complex I (n=5), complex II (n=18), complex III (n=15), complex IV (n=21), complex V (n=5), multiple defects (n=26), CoQ10 deficiency (n=3), mtDNA deletions or depletion determined by Sanger sequencing (n=8) and pyruvate dehydrogenase (PDH) complex defects (n=14). DNA was extracted from blood and underwent targeted NGS sequencing for 132 genes associated with mitochondrial disease for all patients. Overall, targeted NGS found causative mutations in 19 patients (15%). Two were patients with defective complex I, two with defective complex II, two with defective complex III, two with defective complex IV, two with defective PDH complex, six with multiple defects, one with mtDNA depletion whereas two were biochemically undefined. Additionally, 27 patients had candidate genetic variants that were suspicious but not conclusively pathogenic. Ten patients who had
negative panel results were selected for WES based on the accuracy of family history, clinical description, parental consanguinity, and availability of other family members for testing. Variants found on WES were confirmed by Sanger sequencing. Six patients who had WES had pathogenic mutations (60%) that were confirmed by Sanger sequencing and family segregation studies. The authors concluded that the approach of a targeted NGS panel followed by WES in select patients was a powerful approach, and predicted that if used as a first line test, the detection rate would be about 25%, but noted that the choice of which approach may be best for these disorders depends on several institutional factors, such as availability of funding, space, personnel, and bioinformatics expertise.

Pronicka et al. (2016) published their experience using WES to identify a genetic variant in 113 patients who appeared to have a mitochondrial disease when routine genetic testing was negative. Eighty-eight of the patients were tested retrospectively. The patients all scored high on the Mitochondrial Disease Criteria (MDC) scale and met at least one of the following criteria: neonatal onset, basal ganglia involvement, increased 3-methylglutaconic aciduria in urine, and additionally had genetic counseling. WES using TruSeqExome enrichment was performed. The preferred sample was muscle biopsy, but included fibroblast cultures, frozen tissue samples obtained from muscle or liver biopsy, or autopsy. Sixty-seven (59%) patients were positive for deleterious genetic variants in 49 different genes with a known disease link, including 47 patients who had changes in 31 mitochondrial related genes. The rate of WES positivity was directly correlated to the MDC score. The higher the score, the more likely it was a disease causing variant was found, and it was also more likely to be a mitochondrial related gene. Overall, 40 patients had a MDC above 4, and 90% had a pathogenic variant found. They found six rare mtDNA variants not typically included on targeted mtDNA mutation panels, and reported disease causing variants in 13 genes that were not well understood at the time of publication, and were not included on targeted mitochondrial gene panels. The authors reviewed their experience at their center in Poland from 1996-2013 using single gene Sanger sequencing on similar patients and reported that only eight disease causing genes were identified in that time. The authors also compared their results to similar studies in the literature using targeted NGS panels. They concluded that WES was a superior first line genetic test because not all mitochondrial disease genes are known, and targeted NGS may miss important mutations or genes.

Plutino et al. (2018) utilized NGS in a cohort of 80 patients who were clinically diagnosed with mitochondrial disease tests to determine the clinical validity of targeted panel approach to a genetic diagnosis. The patients were diagnosed through clinical, biochemical, and histological analysis. They included 24 children and 56 adults, 38 males and 32 females. Patients first underwent mtDNA testing, and if negative, a custom nuclear gene panel was run. Single deletions and point mutations in the mtDNA were identified using XL-PCR and NGS and confirmed by Southern blot. The custom panel was comprised of 281 genes known to be involved in mitochondrial disease, and were analyzed by NGS and confirmed with Sanger sequencing. Variant filtering and interpretation focused on rare mutations that were predicted to be missense, frame-shift, stop-gain, stop-loss, or splice site variants. Pathogenic variants were found in mtDNA in the first step in one child and 14 adults. The remaining 65 patients had the targeted NGS panel and an additional five children and three adults achieved a genetic diagnosis for an overall diagnostic rate of 29%. The authors reviewed their panel to other studies involving WES and larger panels with reported diagnostic rates of 8-24% and concluded that larger gene panels are not necessary in mitochondrial diseases because of their high heterogeneity, the ongoing discovery of novel genes, and genes that may not appear to be related to mitochondrial function could lead to secondary respiratory chain deficiency.

Lilliker et al. (2018) suggested an approach to diagnosing identifying and diagnosing metabolic myopathies that focuses on the following priorities; identify those that might have a 'genuine' metabolic myopathy, determine clinically the most likely biochemical process, identify which patients need a further work up such as a muscle biopsy or genetic test, identify those patients with conditions for that have treatment available, and offer genetic counseling to the patient and family members, as appropriate. To meet these goals, the authors recommend obtaining a thorough history, which might include obtaining historical medical records to determine how symptoms and lab results change over time, developmental and exercise history. Some symptoms could be attributed by the patient or family to something normal, such as “growing pains,” when in fact this is a subtle yet important clue to a diagnosis. It is important to ask specific and targeted questions to prevent missing possible symptoms. A physical exam, including neurological elements, is key. If a metabolic myopathy is suspected, the early involvement of an experienced multidisciplinary team will be important to help tailor further investigations and reduce the time to diagnosis and treatment. This team may help further rule out "pseudomyopathies" and recommend further CK testing, muscle biopsy, skin biopsy, exercise testing, or EMG. Enzymatic testing based on history, symptoms, and specialist analysis may lead to the diagnosis, or identify the most likely pathway that is affected in the patient. Genetic testing is proving to be an important tool in diagnosing metabolic myopathies, and targeted genetic testing can help confirm a diagnosis at this point. There is a shift towards NGS panel genetic testing as a first tier diagnostic investigation of choice by some; however genetic testing sometimes produces results that are difficult to interpret. The authors conclude that the diagnostic workup and management of patients with metabolic myopathies is complex and early referral to a specialist neuromuscular multidisciplinary clinic is strongly recommended.
Inherited Peripheral Neuropathies (IPN)

Inherited peripheral neuropathies (IPN) occur in about 1 in 2500 people. They are a heterogeneous group of disorders caused by over 90 genes. The main subtypes include Charcot-Marie-Tooth (CMT) disease, hereditary sensory and autonomic neuropathy (HSAN), hereditary motor neuropathy (HMN), and hereditary neuropathy with liability of pressure palsy (HNPP) (Antoniadi et al. 2015).

Charcot-Marie-Tooth (CMT) is a common neuromuscular disorder affected 40 per 100,000 individuals. Classical symptoms include slow, progressive distal muscle weakness, muscle atrophy, and sensory loss over time in the distal limbs. Electrodiagnostic testing has been used to classify CMT as demyelinating or axonal. One gene can result in multiple phenotypes, and all forms of inheritance have been reported. Over 50 genes have been associated with CMT. Traditional Sanger sequencing is cost-prohibitive in investigating all the genes associated with CMT, making targeted NGS an attractive option. In a pilot study of 22 unrelated Chinese CMT patients, the common PMP22 duplication was analyzed first, and found in eight. The remaining individuals underwent target NGS analysis of 44 genes. Genetic variants were classified using American College of Medical Genetics and Genomics (ACMG) standards. Eleven patients were found to have a total of ten possible pathogenic variants, including seven previously reported variants. The three novel variants identified underwent functional testing, and two were found to be likely pathogenic and one likely benign. The authors concluded that NGS has the potential to make a more rapid and precise diagnosis for CMT patients and that functional analysis of novel variants is critical (Li et al. 2016).

Antoniadi et al. (2015) explored the clinical validity of a targeted NGS panel of 56 genes associated with IPN. From July 2013 to December 2014, 448 samples referred from neurologists (67%) or geneticists (33%) for evaluation were included that met clinical criteria. The criteria included idiopathic peripheral neuropathy with progressive weakness in hands/wrists, feet/ankles or associated pes cavus or finger contractures, and/or peripheral sensory loss. Supportive nerve conduction studies were required, with an absence of other non-genetic causes or central nervous system involvement. Most patients (70%) were over the age of 18. Variants were classified using the Association of Clinical Genetics Science Practice Guidelines. Genetic diagnosis was made in 137 (31%) patients, involving 195 pathogenic variants in 31 genes. Nearly half of the diagnosed patients had a pathogenic variant in a gene not previously available for testing, or in a gene whose primary clinical association was not IPN. The authors conclude that this approach overcomes the limitations of a sequential single gene approach and is an efficient tool for obtaining a genetic diagnosis in IPN.
Nam et al. (2016) researched the clinical utility of a 73 IPN gene targeted NGS panel in 78 Korean families affected with IPN (89 affected and 46 unaffected individuals). Fifteen individuals were already known to have the common PMP22 duplication variant in CMT1. In addition, 300 health Korean controls were included in the analysis. Clinical information collected included age of onset, motor and sensory impairments, deep tendon reflexes, muscle atrophy, and nerve conduction studies. Variants were filtered using population frequency and pathogenicity scores from various bioinformatics tools. Putative causative variants were confirmed using Sanger sequencing. In the 15 individuals with a known PMP22 duplication, the gene panel results for read depth for PMP22 and TEKT3 in the duplicated region, when compared to 5 non-duplicated health controls, were significantly higher at 1.49 and 1.47, respectively. This demonstrates that this panel can detect the common CMT1 variant. In remaining study participants 15 pathogenic or likely pathogenic variants with identified in 25 patients from 17 families. Eight mutations had not been previously identified as pathogenic, but segregated with disease in affected family members. In this remaining group, the diagnostic yield was 27%. If the common PMP22 duplication is taken into account, 32 of 78 families could be diagnosed using this panel.

Between 2010 and 2015, patients with inherited neuropathies in the genetic neuropathy clinic at Newcastle Hospitals NHS Foundation in Northern England were evaluated by NGS or WES (Bonsagi et al. 2017). Genetic testing to rule out common mutations for PMP22 deletion/duplication, MFN2, and GJB1 was performed for all patients, and neurological and electrophysiological tests were used to identify candidates. One hundred and five patients from 73 families were ultimately included in the study, including distal motor neuropathy (n=64), axonal neuropathy (n= 16), or complex disease impacting the motor nerves (n=25). Variant classification was based on the 2013 Association for Clinical Genetic Science Practice Guidelines. Twelve index patients were diagnosed from the NGS panel (26%) and 18 index patients from WES (45%). Candidate gene sequencing based on clinical presentation alone would have found a genetic diagnosis in only five of the 105 patients (4.7%). Overall, causative mutations were found in 26 of 73 families, resulting in a 35.6% detection rate. The diagnostic rate in the distal motor neuropathy group was 32.5%, which was higher than what was reported previously. Many of the positive genes were the same between the distal motor neuropathy and axonal neuropathy group, suggesting that disease classifications may need to change.

Professional Societies

American Academy of Neurology (AAN), American Association of Neuromuscular and Electrodiagnostic Medicine (AANEM), and American Academy of Physical Medicine and Rehabilitation (AAMPR)

Distal symmetric polyneuropathy (DSP) is the most common variety of neuropathy. Since the evaluation of this disorder is not standardized, the available literature was reviewed to provide evidence-based guidelines regarding the role of laboratory and genetic tests for the assessment of DSP (England et al. 2009).

- Screening laboratory tests may be considered for all patients with polyneuropathy (Level C). Those tests that provide the highest yield of abnormality are blood glucose, serum B12 with metabolites (methylmalonic acid with or without homocysteine), and serum protein immunofixation electrophoresis (Level C). If there is no definite evidence of diabetes mellitus by routine testing of blood glucose, testing for impaired glucose tolerance may be considered in distal symmetric sensory polyneuropathy (Level C).
- Genetic testing should be conducted for the accurate diagnosis and classification of hereditary neuropathies (Level A). Genetic testing may be considered in patients with cryptogenic polyneuropathy who exhibit a hereditary neuropathy phenotype (Level C). Initial genetic testing should be guided by the clinical phenotype, inheritance pattern, and electrodiagnostic features and should focus on the most common abnormalities which are CMT1A duplication/HNPP deletion, Cx32 (GJB1), and MFN2 mutation screening.
- There is insufficient evidence to support routine genetic testing in cryptogenic polyneuropathy patients without a classical hereditary phenotype.

The majority of hereditary DSPs are variants of Charcot Marie Tooth (CMT) disease, which has a wide range of phenotypic expression, and can be caused by de novo mutations, so a family history may not always be informative. When a hereditary DSP is suspected, the authors recommend a stepwise approach based on family history and electrodiagnostic test results as follows:

- Electrodiagnostic testing
 - Demyelinating
 - Positive family history, autosomal dominant
 - PMP22 duplication, first tier
 - PMP22 and MPZ testing, second tier
 - EGR2 and LITAF testing, third tier
 - Positive family history, autosomal recessive
 - PRX and GDAP1 testing
 - Positive family history, X-linked
 - GJB1 testing
 - Negative or uninformative family history
 - PMP22 duplication and GJB1 testing, first tier
 - MPZ and PMP22 sequencing, second tier
 o **Axonal**
 - Positive family history, autosomal dominant
 - **MFN2** testing, first tier
 - **MPZ** testing, second tier
 - **RAB7, GARS, NEFL, and HSPB1** testing, third tier
 - Positive family history, autosomal recessive
 - **GDAP1** testing
 - Positive family history, X-linked
 - **GJB1** testing
 - Negative or uninformative family history
 - **MFN2 and GJB1** testing, first tier
 - **MPZ** sequencing, second tier
 - **RAB7, GARS, NEFL, HSPB1, and GDAP1** testing, third tier

The authors concluded that there was insufficient evidence to support routine genetic testing in cryptogenic polynuropathy patients without a classical hereditary phenotype.

Hereditary Spastic Paraplegias (HSP)

Hereditary Spastic Paraplegias (HSP) is a group of genetic diseases characterized by spastic paralysis of the legs, typically caused by selective distal axonal degeneration. They are rare, chronic disorders that occur in about 1 to 9 in 100,000 people and present in childhood and young adulthood. The typical clinical picture is of a slowly progressive, symmetrical, spastic paraplegia. Minor sensory abnormalities (such as absent vibration sensation) and neurological bladder involvement, are common. Arm involvement is not usually seen, and if present, it is minimal and does not extend beyond hyper-reflexia and minor weakness (e.g., difficulty unscrewing a tight bottle top). HSP is categorized into the subtypes of “pure” and “complex.” The pure form is most common in European populations and can be autosomal dominant or recessive. The complex form is typically autosomal recessive, and is more commonly found in populations with a high rate of consanguinity. Over 70 genes have been identified for HSP (Hensiek et al. 2015).

Kara et al. (2016) investigated the genetic cause of disease in a series of 97 index cases with complex spastic paraplegia referred to a tertiary referral neurology center in London for diagnosis or management. Patients were enrolled who had clinical details and DNA available prior to 2015. Only the proband was included in the analysis where a family had more than one affected member. Inclusion criteria included slowly progressive HSP as the primary clinical finding, along with at least one other neurological feature; peripheral neuropathy, cognitive decline, epilepsy, skeletal/bony abnormalities, visual problems, parkinsonism, dystonia, or ataxia. Acquired and metabolic causes of HSP were ruled out. Patients were classified by symptoms as severe, moderate, or mild. Sanger sequencing of the **SPG11** gene was conducted. In patients who were negative for **SPG11** or had only one mutation identified, NGS was employed using the TrueSightOne platform of 4813 genes. Filtering and variant analysis focused on a subset of genes related to spastic paraplegia, neurodegeneration, ataxia, peripheral neuropathy, Parkinson’s disease, and pallidoparymal syndromes. Except for one case without available DNA, Sanger sequencing was used to confirm identified variants. A likely pathogenic variant was identified in 48 of 97 patients (49%). Mutations in **SPG11** were the most common, found in 30 patients. No copy number variants of **SPG11** were identified with NGS. Numerous VUS were detected, which is a common problem with high throughput NGS studies.

IQbal et al. (2017) researched the use of NGS in the diagnosis of 105 hereditary ataxia (HA) and HSP probands identified through the HA and HSP registry in the Department of Neurology, Oslo University Hospital. HA and HSP have phenotypic overlap. HA is characterized by progressive limb and gait ataxia, loss of coordination and disturbances of speech and oculomotor control, and HSP is characterized by progressive spasticity and weakness of the lower limbs, the weakness often being mild relative to the spasticity. The HA/HSP registry has 446 probands, and 77 HSP and 41 HA individuals had a molecular diagnosis at the time of the study. Of those without a genetic diagnosis, 48 HSP and 58 HA patients were selected for NGS, and eight individuals with a known diagnosis were included as a positive control. Variants were classified per the joint consensus recommendations of the American College of Medical Genetics and Genomic (ACMG) and the Association for Molecular Pathology (AMP), and were confirmed by Sanger sequencing. The NGS panel identified all eight positive controls. In the test group, 12 HSP patients had pathogenic or likely pathogenic variants, and two had VUS. Eight HA patients had had pathogenic or likely pathogenic variants, and eight had VUS. Overall, 19% had a definitive molecular diagnosis.

Chrestian et al. (2017) conducted a multi-center observational study of patients who met the clinical criteria for the diagnosis of HSP in Alberta, Ontario and Quebec from 2012-2015 and reported on the genetic test results. Five hundred and twenty six patients were identified with HSP during this time period. DNA testing was conducted on peripheral blood samples. Fifty one families, representing 108 individuals, had WES, and the variants were filtered against all known HSP genes. Thirty seven patients, a cohort from Ontario, had NGS of 51 HSP related genes. Patients with cerebellar signs were screened for mutations in FXN, SACS, and the common spinocerebellar ataxias (SCAs 1–8)
prior to being included in the study. Overall, 150 (28.5%) of patients from 58 families had a confirmed genetic diagnosis. Mutations from 15 different genes were identified, and the most common were in \textit{SPAST} (78%), \textit{ALTI} (16%), and \textit{SPG11} (8%). Genotype/phenotype correlations were noted with \textit{SPAST} mutations (\textit{SPG4}), and were more likely to have a later age of onset but also have bladder dysfunction. \textit{SPG11} mutations were more strongly associated with the presence of learning dysfunction and cognitive deficits.

\textbf{Ataxias}

Ataxia is lack of muscle control or coordination of voluntary movements, and is a symptom found in a number of neuromuscular disorders. It is also the primary feature of a heterogeneous group of disorders such as Friedreich's ataxia, and spinocerebellar ataxias 1, 2, 3, 6, 7 and 17. Over 40 genes have been implicated in ataxias. To understand the value of NGS in diagnosing genetic ataxias, Nemeth et al. (2013) identified 50 patients from unrelated families in the UK that did not have a genetic diagnosis for ataxia, where ataxia was their primary symptom. All patients had negative genetic testing for the gene expansion found in spinocerebellar ataxias 1–3, 6, 7 Friedreich's ataxia, and for mtDNA abnormalities. Multiple standard biochemical tests were run to rule out other metabolic diseases. Targeted NGS was performed for 118 genes, 42 of which were associated with the primary phenotype, and the remaining were considered good candidate genes based on their function. The overall detection rate was 18% and varied from 8.3% in those with an adult onset progressive disorder to 40% in those with a childhood or adolescent onset progressive disorder. Those that had an adolescent onset and a positive family history had a detection rate of 40%. The authors noted difficulties in variants interpretation which are being addressed with updated bioinformatics tools and the need to confirm positive variants with Sanger sequencing and functional testing. Some individuals who did not receive a genetic diagnosis may have variants in genes that were not included in the analysis, as the list of genes that are implicated in ataxia continues to grow.

Pyle et al. (2015). The WES approach was used to test 35 individuals from 22 families affected with ataxia, from 22 randomly selected families of white European descent. Test subjects were identified randomly through routine referrals to the regional neurogenetics service at Newcastle upon Tyne, England. Gender, age, and family history were not considered in selecting cases. Prior to inclusion, all had routine clinical investigations to exclude treatable causes of acquired ataxia, including brain MRI and CSF examination with oligoclonal band analysis. All had negative genetic testing for \textit{SCA1}, 2, 3, 6, 7, 17, \textit{DRPLA}, \textit{FXN}, and \textit{FMR1} in adult males. The mean age was 25, and 14 were male. Family history suggested dominant inheritance in 11 individuals, and recessive inheritance in 14. No consanguinity was reported. \textit{CGH} was performed in individuals who were thought to have recessive inheritance but exome sequencing only found one causative mutation. Confirmed pathogenic variants were found in 9 of 22 probands. Possible pathogenic variants were found in five probands. The diagnostic yield was similar in patients of all age groups. Overall, the likely genetic diagnosis was found in 64% of families. Using the exome approach allows for the analysis of genes outside of the clinical context. In this cohort, this approach confirmed the diagnosis of Niemann Pick type C in two siblings with adult-onset ataxia who lacked the characteristic eye movement disorder seen in childhood. When a variant was found in an unexpected gene the authors used phenotypic and biochemical data to confirm the finding to reduce the risk of a false positive. Exome capture has limitations, noted by the authors. It does not provide complete coverage of all coding regions of the genome, certain copy variants are not detectable, and some pathogenic variants will be found in non-coding regulatory regions.

Hadjivassiliou et al. (2017) prospectively examined 1500 patients presenting with cerebellar ataxia at the Sheffield Ataxia Centre in the United Kingdom over a period of twenty years. Each patient underwent extensive workups that were repeated at six months to yearly intervals. Baseline assessments included, but were not limited to, full blood count, erythrocyte sedimentation rate (ESR), vitamin B12, folate, vitamin E, copper, urea, electrolytes, thyroid function, anti-GAD antibodies, celiac testing, HLA typing, and immunoglobulin analysis. Genetic testing was limited to what was available at the time. Expanded NGS panels were available after June, 2014. Mitochondrial testing was only performed when indicated. Overall there were 295 patients with a familial ataxia, and 1205 patients with a sporadic form. In those with a familial ataxia, a genetic diagnosis was confirmed using genetic testing in 58% of patients. In those with sporadic ataxia, 13% were found to have a genetic diagnosis. Since June, 2014, 146 patients had genetic testing using the NGS panel, of which 54 patients had a dominant family history, 17 a family history consistent with recessive inheritance, 33 had sporadic early onset ataxia and 42 had sporadic late onset ataxia. Positive results were found in 32% of patients. Of note, none of the patients with an episodic ataxia type 1 \textit{EA2} mutation had episodic ataxia, but rather had a progressive form. Additionally, four patients had a \textit{SPG7} mutation that helped identify a related phenotype of slurred speech, ataxia, mild spastic paraparesis, and proximal weakness. This lead to the genetic testing of \textit{SPG7} in 58 additional individuals with the same phenotype. Twenty-eight of these (48%) were found to be positive. The author concluded that in their cohort the potential for a genetic diagnosis was present in 30% of cases, which included the 13% diagnosed with a genetic disease in the sporadic cases, and the familial cases. The diagnostic yield of NGS testing, when introduced, was 32% overall, but 46% in the cases with a dominant family history of disease. The authors also noted that in the sporadic ataxia group, if genetic testing was applied only to those who had other diagnoses ruled out, the diagnostic yield becomes 35%. Because genetic testing is expensive, the authors recommended a selection criterion to increase the diagnostic yield that included brain imaging, family history, routine lab tests, age of onset, physical exam, and then targeted genetic testing based on those results, if possible. If the
targeted genetic testing is negative, or the other clinical tests do not point to a specific genetic diagnosis, then consider the NGS panel test.

Coutelier et al. (2018) assessed the analytical clinical validity of using exome targeted capture sequencing to detect mutations in genes associated with cerebellar ataxias (CA) in 319 patients from the Brain and Spine Institute, Salpetriere Hospital, Paris, France. Analysis took place between January 2014 and December 2016. Gender was equally male and female, and national origin was primarily French and European. Six clinical groups were recognized in 298 patients with full clinical information available: 1) pure ataxic phenotype (n = 62), 2) additional spastic component (spastic ataxia) (n = 100), 3) complex late-onset clinical picture with extrapyramidal signs (n = 30), 4) metabolic presentation with mitochondrial features or white matter changes (n = 70), 5) sensory ataxia (n = 19), or 6) CA with an oculomotor apraxia (AOA)–like presentation (n = 17). Consanguinity was noted in 101 of 298 patients. The 21 remaining patients were not classified. Variants were filtered to review only 209 genes associated with CA or HSP. Sanger sequencing was used to confirm variants with the read depth was below 10x, or if family members were available for segregation analysis. Pathogenic or likely pathogenic variants were achieved for 72 patients (22.6%), with an additional 19 (6.0%) harboring possibly pathogenic variants. The highest diagnostic rate was obtained for patients with an autosomal recessive CA with oculomotor apraxia–like phenotype (35.3%) or spastic ataxia (35.0%) and patients with onset before 25 years of age (31.3%). The set of 209 genes that included HSP allowed for 30% additional diagnoses.

U.S. FOOD AND DRUG ADMINISTRATION (FDA)

CENTERS FOR MEDICARE AND MEDICAID SERVICES (CMS)

Medicare does not have a National Coverage Determination (NCD) that specifically addresses multi-gene panel testing for the diagnosis of neuromuscular disorders. Local Coverage Determinations (LCDs) that address CPT codes 81443, 81440, 81460, 81465 and 81479 exist. Refer to the LCDs for Molecular Pathology Procedures and Molecular Diagnostic Tests (MDT). (Accessed March 20, 2019)

REFERENCES

POLICY HISTORY/REVISION INFORMATION

<table>
<thead>
<tr>
<th>Date</th>
<th>Action/Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10/01/2019</td>
<td>New Medical Policy</td>
</tr>
</tbody>
</table>

INSTRUCTIONS FOR USE

This Medical Policy provides assistance in interpreting UnitedHealthcare standard benefit plans. When deciding coverage, the member specific benefit plan document must be referenced as the terms of the member specific benefit plan may differ from the standard plan. In the event of a conflict, the member specific benefit plan document governs. Before using this policy, please check the member specific benefit plan document and any applicable federal or state mandates. UnitedHealthcare reserves the right to modify its Policies and Guidelines as necessary. This Medical Policy is provided for informational purposes. It does not constitute medical advice.

This Medical Policy may also be applied to Medicare Advantage plans in certain instances. In the absence of a Medicare National Coverage Determination (NCD), Local Coverage Determination (LCD), or other Medicare coverage guidance, CMS allows a Medicare Advantage Organization (MAO) to create its own coverage determinations, using objective evidence-based rationale relying on authoritative evidence (Medicare IOM Pub. No. 100-16, Ch. 4, §90.5).

UnitedHealthcare may also use tools developed by third parties, such as the MCG™ Care Guidelines, to assist us in administering health benefits. UnitedHealthcare Medical Policies are intended to be used in connection with the independent professional medical judgment of a qualified health care provider and do not constitute the practice of medicine or medical advice.