Coverage Rationale

The following are proven and medically necessary to evaluate symptomatic women for Vaginitis:

- Direct and amplified DNA probe testing for Trichomoniasis vaginalis
- Direct probe testing for Candida sp

Due to insufficient evidence of efficacy, the following are unproven and not medically necessary:

- Amplified DNA probe testing for vulvovaginitis due to Candida sp
- Direct and amplified DNA probe testing for bacterial Vaginosis (i.e., Gardnerella vaginalis)
- Multiplex polymerase chain reaction (PCR) panel testing of genitourinary pathogens, including but not limited to pathogens commonly associated with Vaginitis

Note: This policy does not apply to tests for gonorrhea and chlamydia.

Definitions

Sexually Transmitted Infection (STI): An STI is an infection that is spread by sexual contact. Infections include chlamydia, gonorrhea, human papillomavirus (HPV), herpes, syphilis, and human immunodeficiency virus (HIV) (American College of Obstetricians and Gynecologists, 2019).

Vaginitis: Vaginitis is defined as inflammation or infection of the vagina. The most common causes of Vaginitis include vulvovaginal candidiasis, trichomoniasis, and bacterial Vaginosis (American College of Obstetricians and Gynecologists, 2020).

Vaginosis: Vaginosis is caused by the overgrowth of a number of organisms that are normally found in the vagina. It is a common cause of Vaginitis (American College of Obstetricians and Gynecologists, 2020).
Applicable Codes

The following list(s) of procedure and/or diagnosis codes is provided for reference purposes only and may not be all inclusive. Listing of a code in this policy does not imply that the service described by the code is a covered or non-covered health service. Benefit coverage for health services is determined by the member specific benefit plan document and applicable laws that may require coverage for a specific service. The inclusion of a code does not imply any right to reimbursement or guarantee claim payment. Other Policies and Guidelines may apply.

<table>
<thead>
<tr>
<th>CPT Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0068U</td>
<td>Candida species panel (C. albicans, C. glabrata, C. parapsilosis, C. krusei, C tropicalis, and C. auris), amplified probe technique with qualitative report of the presence or absence of each species</td>
</tr>
<tr>
<td>81513</td>
<td>Infectious disease, bacterial vaginosis, quantitative real-time amplification of RNA markers for Atopobium vaginae, Gardnerella vaginalis, and Lactobacillus species, utilizing vaginal-fluid specimens, algorithm reported as a positive or negative result for bacterial vaginosis</td>
</tr>
<tr>
<td>81514</td>
<td>Infectious disease, bacterial vaginosis and vaginitis, quantitative real-time amplification of DNA markers for Gardnerella vaginalis, Atopobium vaginae, Megasphaera type 1, Bacterial Vaginosis Associated Bacteria-2 (BVAB-2), and Lactobacillus species (L. crispatus and L. jensenii), utilizing vaginal-fluid specimens, algorithm reported as a positive or negative for high likelihood of bacterial vaginosis, includes separate detection of Trichomomas vaginalis and/or Candida species (C. albicans, C. tropicalis, C. parapsilosis, C. dubliniensis), Candida glabrata, Candida krusei, when reported</td>
</tr>
<tr>
<td>87480</td>
<td>Infectious agent detection by nucleic acid (DNA or RNA); Candida species, direct probe technique</td>
</tr>
<tr>
<td>87481</td>
<td>Infectious agent detection by nucleic acid (DNA or RNA); Candida species, amplified probe technique</td>
</tr>
<tr>
<td>87482</td>
<td>Infectious agent detection by nucleic acid (DNA or RNA); Candida species, quantification</td>
</tr>
<tr>
<td>87510</td>
<td>Infectious agent detection by nucleic acid (DNA or RNA); Gardnerella vaginalis, direct probe technique</td>
</tr>
<tr>
<td>87511</td>
<td>Infectious agent detection by nucleic acid (DNA or RNA); Gardnerella vaginalis, amplified probe technique</td>
</tr>
<tr>
<td>87512</td>
<td>Infectious agent detection by nucleic acid (DNA or RNA); Gardnerella vaginalis, quantification</td>
</tr>
<tr>
<td>87660</td>
<td>Infectious agent detection by nucleic acid (DNA or RNA); Trichomonas vaginalis, direct probe technique</td>
</tr>
<tr>
<td>87661</td>
<td>Infectious agent detection by nucleic acid (DNA or RNA); Trichomonas vaginalis, amplified probe technique</td>
</tr>
<tr>
<td>87797</td>
<td>Infectious agent detection by nucleic acid (DNA or RNA), not otherwise specified; direct probe technique, each organism</td>
</tr>
<tr>
<td>87798</td>
<td>Infectious agent detection by nucleic acid (DNA or RNA), not otherwise specified; amplified probe technique, each organism</td>
</tr>
<tr>
<td>87799</td>
<td>Infectious agent detection by nucleic acid (DNA or RNA), not otherwise specified; quantification, each organism</td>
</tr>
<tr>
<td>87800</td>
<td>Infectious agent detection by nucleic acid (DNA or RNA), multiple organisms; direct probe(s) technique</td>
</tr>
<tr>
<td>87801</td>
<td>Infectious agent detection by nucleic acid (DNA or RNA), multiple organisms; amplified probe(s) technique</td>
</tr>
</tbody>
</table>

CPT® is a registered trademark of the American Medical Association

Description of Services

Bacterial Vaginosis (BV), Trichomonas vaginalis (T. vaginalis) and Candida species cause the highest number of cases of acute vulvovaginal symptoms that lead a woman to seek medical care. The physician must assimilate information from the history and physical examination with information obtained from a vaginal swab to make a diagnosis for the appropriate treatment. Material from the swab can be used to make a determination of vaginal pH, to prepare slides for microscopy, to perform molecular tests and other rapid tests, and to culture organisms.

Molecular testing for diagnosis of vaginal infection is based on the detection of one or more specific nucleic acid sequences. In
The potential use of nucleic acid probe technology for the diagnosis of Vaginitis/Vaginosis was explored in the mid-1990s with the development of a DNA probe assay. The most recent version of this test, Affirm VP III, utilizes hybridization of specific organismal sequences to specific labeled DNA probes to detect Candida species, Gardnerella vaginalis (as a marker for BV), and T. vaginalis.

Clinical Evidence

DNA Probe Testing

DNA probe testing for Trichomoniasis vaginalis or Candida sp may be beneficial for evaluating symptomatic women for vaginitis. There is limited evidence to demonstrate the clinical utility of direct and amplified DNA probe tests for bacterial vaginosis and amplified DNA probe tests for vulvovaginitis due to Candida sp.

DNA probe tests may be particularly useful for physicians who are less skilled in office laboratory diagnostic techniques for vaginitis. The potential value of DNA probe tests for aiding in the diagnosis of vaginosis was demonstrated by Ferris and colleagues (1995) that compared the performance of routine primary care physician-performed office laboratory diagnostic techniques for women with abnormal vaginal symptoms to the results obtained by a DNA probe test for *T. vaginalis, Gardnerella vaginalis*, and *Candida species* (Affirm VP III). The clinical microscopic results for sensitivity and specificity were vulvovaginal candidiasis (VVC) 39.6 % and 94 %, trichomoniasis 75.0 % and 96.6 %, and bacterial vaginosis (BV) 76.5 % and 70.8 %. By comparison, the sensitivity and specificity of the DNA probe test for VVC was 75.0 % and 95.7 %, trichomoniasis was 86.5 % and 98.5 %, and BV was 95.4 % and 60.7 %. The researchers concluded that primary care physicians demonstrated a high specificity but low sensitivity when identifying trichomoniasis and VVC by microscopic techniques, and that the DNA probe test was more accurate. However, each pathogen associated with common genitourinary pathogens has its own diagnostic and clinical considerations (Table 1) that in turn influences the clinical utility of the DNA probe tests.

<table>
<thead>
<tr>
<th>Infection</th>
<th>Discharge</th>
<th>Whiff test</th>
<th>pH</th>
<th>Microscopy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Candida species</td>
<td>Thick</td>
<td>Negative</td>
<td>Normal (<4.5)</td>
<td>Yeasts, hyphae</td>
</tr>
<tr>
<td>Bacterial vaginosis</td>
<td>Thin, homogeneous</td>
<td>Positive</td>
<td>Increased (>4.5)</td>
<td>Clue cells, decreased Lactobacilli</td>
</tr>
<tr>
<td>Trichomonas vaginalis</td>
<td>Frothy, yellow-green</td>
<td>Positive</td>
<td>Increased (>4.5)</td>
<td>Protozoa</td>
</tr>
</tbody>
</table>

Diagnosis of vaginitis/vaginosis typically hinges on the proper evaluation of a significant amount of data, including the information presented in the table above, and can be quite time-consuming. Despite the frequency with which women present to their doctors with complaints of vaginal symptoms, physicians do not always reliably carry out the diagnostic protocol (Schwiertz et al., 2006). Correct, timely identification of pathogens is critical for treatment, prevention of the spread of contagious disease, and reduction in the risks associated with vaginal infection.

Bacterial Vaginosis (BV)

BV is the most common documented cause of vulvovaginitis among women of reproductive age. In the United States, the prevalence of BV in the general population is estimated to be almost one in three women (Allsworth and Peipert, 2007). BV can produce vaginal discharge and a “fishy” odor, but the majority of women are asymptomatic (Koumans et al., 2007). BV is a polymicrobial infection that is characterized by a shift in vaginal microbiota from an acidic pH (<4.5) with Lactobacillus species to a more alkaline pH heralded by the presence of Gardnerella vaginalis, a gram-variable coccobacillus, and marked by the presence of other species including Prevotella, Mobiluncus, Ureaplasma and Mycoplasma (Jones, 2019).

BV is of significant public health interest, not just because of its high prevalence, but because it is associated with an increased risk of other medical complications including preterm labor and pelvic inflammatory disease along with increased risk to acquire sexually transmitted infections (Paavonen and Brunham, 2018). Despite its association with adverse pregnancy outcomes, the United States Preventive Services Task Force does not currently recommend screening of asymptomatic pregnant women for bacterial vaginosis although workup of symptomatic women is recommended (USPSTF, 2008). BV can be successfully treated with antibiotics, though the recurrence rate is high. BV can be sexually transmitted and is one of the most
commonly diagnosed infections in women following sexual assault. Treatment of sexual partners does not decrease the recurrence rate (CDC, 2015).

Diagnosis of bacterial vaginosis using clinical criteria may be performed by assessing a patient sample via wet prep microscopy for at least three of the four Amsel’s criteria: thin and homogeneous vaginal discharge, pH > 4.5, positive whiff test, and presence of clue cells on microscopy (CDC, 2015). These criteria are indicative of the microbiota changes associated with bacterial vaginosis which allow overgrowth of species such as Gardnerella vaginalis. The Gram stain is the gold-standard for BV diagnosis and evaluates the quantity of normal flora versus BV flora. Gram stains may be used in conjunction with Nugent’s criteria to score the samples and categorize them as being normal flora (0-3), intermediate/mixed flora (4-6), or indicative of bacterial vaginosis (7-10) (Coleman and Gaydos, 2018).

Research indicates that this microscope-grounded clinical diagnosis of bacterial vaginosis is inconsistently reliable, in part because it relies upon a clinician’s willingness, ability and skill to review slides at a microscope to identify cytologic characteristics of the disease and to apply the findings to clinical criteria. A study designed to evaluate agreement among observers reviewing Gram stains for a diagnosis of bacterial vaginosis found complete agreement among reviewers in 76.2 percent of cases (Mohanty et al., 2010). Another study used κ chance-corrected agreement statistics to compare the microscopic diagnosis of Candida and bacterial vaginosis on wet prep by blinded pairs of observers; the study found agreement was moderate (κ=0.45) for bacterial vaginosis and fair (κ=0.3) for candidiasis in a ranking system with possible outcomes of almost perfect, substantial, moderate, fair and poor agreement (Whiteside et al., 2011). While bacterial vaginosis is a condition that can be identified on Pap test, it is a diagnosis that is often missed. Conventional Pap smear techniques have higher diagnostic utility than liquid-based thin-layer prep (Takei et al., 2006), but due to low sensitivity and specificity, the CDC does not recommend the use of Pap smear for the diagnosis of bacterial vaginosis. Bacterial culture is also not recommended as it is nonspecific (CDC, 2015).

Methods such as broad-range and quantitative polymerase chain reaction (PCR) have identified novel bacteria associated with BV while also providing more objective, quantitative measures of bacterial presence (Ravel et al., 2011). These tests have also enabled a greater understanding of the complexity of microflora alterations underlying bacterial vaginosis and provided more probative tools for developing improved diagnostic tests. A study using PCR to identify bacteria in women with bacterial vaginosis found Gardnerella vaginalis in 100% of women with bacterial vaginosis but also found the bacterium in 60% of women without this syndrome (Fredricks et al., 2005). A number of studies have been published describing the use of quantitative or semi-quantitative PCR methodologies for diagnosing BV (Sha et al., 2005; Menard et al., 2008). A unified clinical approach for using PCR technology to diagnose BV has not yet been established.

According to the CDC, the Gram stain remains the gold standard laboratory method. While other tests, such as the Affirm VP III, have been shown to have acceptable performance characteristics compared with the Gram stain, they have not become the gold standard. PCR tests have only been evaluated in research settings and have yet to show clinical utility. Additional validation is needed prior to the use of PCR for detection of BV (CDC, 2015).

Trichomonas Vaginalis (T. Vaginalis)

T. vaginalis is a sexually-transmitted motile protozoan that causes vaginal discharge and pruritus although the majority of cases are believed to be asymptomatic. The characteristic appearance of the cervix associated with this infection, strawberry cervix, only occurs in a small number of cases and therefore is an inconsistent diagnostic feature (Huppert, 2009).

T. vaginalis is considered a sexually transmitted disease, and concurrent treatment is important for the index case and all sexual partners to eradicate infection. Like BV, T. vaginalis is one of the most common infections following sexual assault. Due to the high rate of reinfection with T. vaginalis, the CDC recommends retesting for T. vaginalis infection within 3 months following initial treatment for all sexually active women (CDC, 2015).

Successful treatment of T. vaginalis infection is important because it has been associated with infertility and adverse pregnancy outcomes. Further, because T. vaginalis has been associated with increased vaginal shedding of HIV, screening of all HIV-positive women entering care is recommended by the Centers for Disease Control and Prevention. T. vaginalis can also cause cervicitis, leading to vaginal discharge, and the CDC recommends women with cervicitis who are symptomatic for the infection should have additional testing if trichomonads are not identified by microscopy (CDC, 2015).
Although the characteristic flagellated organisms can be visualized moving about on wet prep, the sensitivity and specificity for the diagnosis of T. vaginalis on wet prep is low compared to culture. In a study comparing diagnostic modalities for the diagnosis of T. vaginalis, wet mount detected 56% of infections and rapid test plus wet mount increased detection to 86% (Pattullo et al., 2008). And while culture is a reliable diagnostic modality, it takes as many as five days for results (Huppert, 2009), and is no longer the gold standard for T. vaginalis diagnosis since the advent of valid molecular diagnostic methods (CDC, 2015).

APTIMA T. vaginalis is a nucleic acid amplification test that has been reported to be more sensitive than culture for the diagnosis of T. vaginalis (Nye et al., 2009). In a large, multi-center trial sponsored by Gen-Probe, APTIMA T. vaginalis sensitivity was found to be 100% in vaginal swab, endocervical swab, and liquid cytology cervical specimens. The test also had high sensitivity for urine specimens. Specificities for the various specimen sources ranged from 98.9% to 99.6% (Schwebke et al., 2011). Another Gen-Probe sponsored study reported a sensitivity and specificity of 100% when using an in-house second transcription-mediated amplification test with a different primer and probe set as a confirmatory test (Andrea and Chapin, 2011).

Vulvovaginal Candidiasis (VVC)

In the United States, Candida albicans is responsible for most cases of VVC followed by Candida glabrata. C. albicans is a fungus that is part of the normal flora of the oral cavity, gastrointestinal tract, and female genital tract. Morphologically, it grows as yeast and a hyphal form in contrast to Candida glabrata, which lacks hyphal elements. VVC symptoms are nonspecific and typically include vulvar pruritus, vulvovaginal irritation, and a thick curdy discharge (Achkar and Fries, 2010).

Candida is usually not sexually transmitted, and VVC can occur spontaneously or as a result of a clinical risk factor such as antibiotic therapy. The true prevalence of VVC is somewhat obfuscated due to the availability of over-the-counter therapies (Sobel, 2007) which allow self-diagnosis and treatment but can also result in delay of correct diagnosis and treatment due to erroneous self-diagnosis (Ferris et al., 2002). It is estimated that 75% of women will have at least one instance of VVC in their lifetime. Treatment of uncomplicated cases is usually by topical azoles or oral fluconazole. Long-term fluconazole therapy is used for patients with recurrent VVC, defined as 4 or more cases in 12 months (CDC, 2015).

Diagnosis of VVC may be made when a woman presenting with symptoms of vaginitis has either 1) a Gram stain or wet prep of vaginal discharge that demonstrates budding yeasts, hyphae, or pseudohyphae or 2) culture or other test is positive for Candida. While KOH preps and Gram stains demonstrate budding yeasts, Candida glabrata does not form hyphae and thus may escape microscopic diagnosis (CDC, 2015). Pap tests are even less sensitive than wet prep for Candida species. Patients often treat themselves with over-the-counter antymicotics based on empiric diagnosis of Candida, but a study that offered clinical testing to women purchasing antymycotics found that only 33.7% of them actually had Candida (Ferris et al., 2002).

A limited number of studies have been performed using nucleic acid amplification as a diagnostic tool for VVC. There are reports of superiority of PCR to culture for the diagnosis of Candida (Xiang et al., 2007) including patient populations with recurrent VVC (Giraldo et al., 2000; Weissenbacher et al., 2009). While there is not a compelling case to be made that routine testing of vaginal samples by PCR is necessary for accurate diagnosis of VVC, this technique clearly has the potential to provide diagnostic information of at least comparable value to the most widely accepted gold standard method for identifying VVC (namely culture) including identification of clinically-relevant species and mixed infections.

Panel Testing for Multiple Genitourinary Pathogens

There is a lack of studies that demonstrate clinical utility of panel testing for multiple genitourinary pathogens. Each of the clinical presentations of these infections is different for the various pathogens and there are unique single tests available. Nucleic acid amplification testing has limitations when applied to organisms that potentially form part of the normal human flora (Bursle and Robson, 2016). In an evaluation of a PCR assay for BV, van der Veer and colleagues (2018) concluded that while the test was sensitive, positive results need to be interpreted with clinical symptoms due to asymptomatic vaginal dysbiosis.

While the clinical presentations and diagnostic criteria are different from the different pathogens associated with vaginitis (Table 1), panels that screen for multiple pathogens simultaneously have been developed. Examples of commercially available multtarget PCR tests include BD MAX vaginal panel, MDL BV panel, SureSwab, and NuSwab. All tests are designed to detect bacterial species whose presence or absence is informative in the diagnosis of BV, but differ somewhat in which indicator organisms were selected for the panel, as well as in sensitivity and specificity metrics.
Schwebke and colleagues (2018) analyzed the BD MAX vaginal panel compared to reference, for detection of BV, Candida spp., and T. vaginalis. Specimens from 1,740 women were analyzed using the BD MAX panel. Clinician diagnosis (Amsel's test, KOH preparation, and wet mount) were also performed. All testing methods were compared to the respective reference methods. The BD MAX panel resulted in significantly higher sensitivity and negative predictive value than clinician diagnosis. In addition, this test showed a statistically higher overall percent agreement with each of the 3 reference methods than did clinician diagnosis. The authors concluded that findings from the current study supported the potential utility of the BD MAX vaginal panel in the differential diagnosis of vaginitis. The authors indicated that future studies are required to establish the benefits regarding the application of this investigational test in a practical setting.

BD MAX vaginal panel is capable of detecting several Candida species and T. vaginalis in addition to diagnosing bacterial vaginosis via a proprietary algorithm which performs a quantitative assessment of G. vaginalis, Megasphaera type 1, A. vaginae, Lactobacillus spp., and BVAB2. In a cross-sectional study by Gaydos et al. (2017) the BD MAX assay results were compared to reference methods for the diagnosis of bacterial vaginosis (Nugent’s and Amsel’s criteria), Candida infection (culture), and trichomoniasis (wet mount and culture) for samples collected from 1,740 symptomatic women. BD MAX test sensitivity was 90.5% (95% CI 88.3-92.2%) and specificity was 85.8% (95% CI 83.0-88.3%) for bacterial vaginosis. Candida group test sensitivity was 90.9% (95% CI 88.1-93.1%) and specificity was 94.1% (95% CI 92.6-95.4%), with lower sensitivity for Candida glabrata (75.9% (95% CI 57.9-87.8%)) but a high specificity (99.7% (95% CI 99.3-99.9%)). BD MAX vaginal panel test sensitivity was 93.1% (95% CI 87.4-96.3%) and specificity was 99.3% (95% CI 98.7-99.6%) for the presence of T. vaginalis. According to the authors, this investigational test appears to be a promising molecular assay for detection of vaginitis using molecular amplification of vaginal microbiome organisms, indicating a one-assay platform could potentially aid clinicians in diagnosing vaginitis. Research will be required to demonstrate performance and outcomes in various populations such as pregnant women, hypoestrogenic women, and asymptomatic women.

In a comparison of Affirm VPIII to liquid-based Pap test, Levi et al. (2011) reviewed 431 cases where material for Pap test and Affirm testing were simultaneously obtained. Affirm VPIII identified more cases of infection with all three etiologic agents than did Pap test. Using κ statistics, there was poor agreement between Pap test and Affirm VPIII for diagnosis of bacterial vaginosis and T. vaginalis. Of note, Affirm VPIII identified 30 cases of coinfection by two or more organisms whereas Pap test only identified coinfection in 5 cases. This study demonstrates that Affirm VPIII may be useful for detecting mixed infection. According to the authors, this study was limited because they were not able to estimate the sensitivity and specificity of the Affirm VPIII assay and Pap tests due to not comparing their results with the gold standards such as microbial cultures or Gram stain.

In a study of 535 military women presenting with symptoms of acute vulvovaginitis, vaginal specimens were collected for DNA probe analysis by Affirm VPIII. The patients were treated based on the results of wet prep microscopy, whiff test, and pH determination only and not on the basis of the molecular tests. Follow-up telephone calls were made to assess resolution of symptoms. Of 64 cases that were negative by clinical exam, DNA probe analysis detected 4 cases of Candida, 21 cases of BV, and 3 cases of mixed BV and Candida. Eight of twenty-eight women complaining of symptoms not resolved after the clinic visit represented missed cases of BV (Lowe et al., 2009). This study highlights that Affirm VPIII has the potential to decrease the number of repeat patient visits to establish a definitive diagnosis. Study limitations include its observational nature and small subgroup size for trichomoniasis vaginialis.

Professional Societies and Other Guidelines

American College of Obstetricians and Gynecologists (ACOG)

ACOG published a recent Clinical Management Guideline to describe the diagnosis and treatment of the common causes of vaginitis in nonpregnant women (ACOG 2020). In the summary of recommendations, ACOG gives the following recommendations a Level A rating (based on good and consistent scientific evidence):

- Use of Amsel clinical criteria or Gram stain with Nugent scoring for the diagnosis of BV
- Nucleic acid amplification testing (NAAT) for the diagnosis of trichomoniasis
- In a symptomatic patient, diagnosis of VVC requires one of the following two findings: 1) spores, pseudohyphae, or hyphae on wet-mount microscopy or 2) positive vaginal fungal culture or commercial diagnostic test

Level B recommendations (based on limited of inconsistent scientific evidence) include:

- Pap tests are not reliable for the diagnosis of vaginitis
Infectious Diseases Society of America/American Society for Microbiology

The Infectious Diseases Society of America and the American Society for Microbiology released a joint guide (Miller et al., 2018) that contains the following recommendations for the diagnosis of vaginosis/vaginitis:

- Nucleic acid amplification tests are recommended for suspected diagnosis of T. vaginalis infection due to the wide variation in sensitivity and ability to detect T. vaginalis between observers using microscopy.
- For the diagnosis of bacterial vaginosis, the use of Amsel’s clinical criteria or scored Gram stain of vaginal discharge are preferred over probe hybridization or culture for only G. vaginalis due to the lower specificity of probe and culture testing for BV.
- For candidiasis diagnosis, wet prep, culture, or DNA probe are the recommended methods, with culture being preferred in cases of recurrent candidiasis.

Centers for Disease Control and Prevention (CDC)

The CDC recommends the following diagnostic modalities for the treatment of bacterial vaginosis, Trichomonas vaginalis and Candida in the Sexually Transmitted Treatment Guidelines published in 2015 (CDC, 2015):

- For the diagnosis of bacterial vaginosis, the following tests are recommended: Amsel’s clinical criteria or Gram stain. While DNA probe tests have been shown to have acceptable performance characteristics compared with Gram stain, the Gram stain remains the gold standard laboratory method. Other enzymatic activity tests, such as the proline aminopeptidase card test, are not recommended due to low sensitivity and specificity. Culture is not recommended and the Pap test is not useful for this purpose.
- For the diagnosis of Trichomonas vaginalis in women, the following tests are recommended: wet prep microscopy, DNA probe testing, rapid antigen tests, nucleic acid amplification tests, and culture. Due to its low sensitivity for detecting T. vaginalis in vaginal specimens, it is recommended that this method be used in conjunction with a highly sensitive test, such as nucleic acid amplification.
- For the diagnosis of Candida, a diagnosis can be made when wet prep, Gram stain, culture or other test is positive for a yeast species.

United States Preventive Services Task Force (USPSTF)

The USPSTF recommends against screening for bacterial vaginosis in pregnant women who are not at increased risk for preterm delivery. Additionally, it states that there is currently insufficient evidence to assess the benefits and risks of screening for bacterial vaginosis in pregnant women who are at risk for preterm delivery (USPSTF 2008; USPSTF 2019).

British Association for Sexual Health and HIV

The British Association for Sexual Health and HIV recommends the following diagnostic tests in women presenting with signs and symptoms of vaginal infection (British Association for Sexual Health and HIV, 2019; Sherrard et al., 2014):

- For suspected yeast infection, microscopy examination of wet prep slide is recommended; culture is only recommended in cases of recurrent infection.
- For diagnosis of trichomoniasis, nucleic acid amplification tests are recommended over microscopy or culture as it has higher sensitivity and is becoming the gold standard for T. vaginalis diagnosis.

U.S. Food and Drug Administration (FDA)

This section is to be used for informational purposes only. FDA approval alone is not a basis for coverage.

There are several commercial multiplex polymerase chain reaction (PCR) kits that have been cleared through the FDA 510(k) clearance process. For more information regarding specific tests and FDA approval status may be found on the FDA website at: https://www.fda.gov/medical-devices/vitro-diagnostics/nucleic-acid-based-tests. (Accessed January 8, 2020)
Medicare does not have a National Coverage Determination (NCD) for genitourinary pathogen nucleic acid detection panel testing. Local Coverage Determinations (LCDs) exist; see the LCDs for MolDX: Molecular Diagnostic Tests (MDT) and Molecular Diagnostics: Genitourinary Infectious Disease Testing. (Accessed January 8, 2020)

References

Instructions for Use

This Medical Policy provides assistance in interpreting UnitedHealthcare standard benefit plans. When deciding coverage, the member specific benefit plan document must be referenced as the terms of the member specific benefit plan may differ from the standard plan. In the event of a conflict, the member specific benefit plan document governs. Before using this policy, please check the member specific benefit plan document and any applicable federal or state mandates. UnitedHealthcare reserves the right to modify its Policies and Guidelines as necessary. This Medical Policy is provided for informational purposes. It does not constitute medical advice.

This Medical Policy may also be applied to Medicare Advantage plans in certain instances. In the absence of a Medicare National Coverage Determination (NCD), Local Coverage Determination (LCD), or other Medicare coverage guidance, CMS allows a Medicare Advantage Organization (MAO) to create its own coverage determinations, using objective evidence-based rationale relying on authoritative evidence (Medicare IOM Pub. No. 100-16, Ch. 4, §90.5).

UnitedHealthcare may also use tools developed by third parties, such as the MCG™ Care Guidelines, to assist us in administering health benefits. UnitedHealthcare Medical Policies are intended to be used in connection with the independent professional medical judgment of a qualified health care provider and do not constitute the practice of medicine or medical advice.