SURGICAL PERIODONTICS: RESECTIVE PROCEDURES

Policy Number: DCP013.05
Effective Date: March 1, 2018

Table of Contents

<table>
<thead>
<tr>
<th>Related Dental Policies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Mouth Debridement</td>
</tr>
<tr>
<td>Non-Surgical Periodontal Therapy</td>
</tr>
<tr>
<td>Provisional Splinting</td>
</tr>
<tr>
<td>Surgical Periodontics: Mucogingival Procedures</td>
</tr>
<tr>
<td>Surgical Periodontics: Regenerative Procedures</td>
</tr>
</tbody>
</table>

INSTRUCTIONS FOR USE

This Dental Coverage Policy provides assistance in interpreting UnitedHealthcare dental benefit plans. When deciding coverage, the member specific benefit plan document must be referenced. The terms of the member specific benefit plan document (e.g., Certificate of Coverage (COC), Schedule of Benefits (SOB), and/or Summary Plan Description (SPD)) may differ greatly from the standard benefit plan upon which this Dental Coverage Policy is based. In the event of a conflict, the member specific benefit plan document supersedes this Dental Coverage Policy. All reviewers must first identify member eligibility, any federal or state regulatory requirements, and the member specific benefit plan coverage prior to use of this Dental Coverage Policy. Other Clinical Policies and Coverage Guidelines may apply.

UnitedHealthcare reserves the right, in its sole discretion, to modify its Policies and Guidelines as necessary. This Dental Coverage Policy is provided for informational purposes. It does not constitute medical advice.

BENEFIT CONSIDERATIONS

Before using this policy, please check the member specific benefit plan document and any federal or state mandates, if applicable.

Essential Health Benefits for Individual and Small Group

For plan years beginning on or after January 1, 2014, the Affordable Care Act of 2010 (ACA) requires fully insured non-grandfathered individual and small group health plans (inside and outside of Exchanges) to provide coverage for Pediatric Dental Essential Health Benefits (“EHBs”). Large group plans (both self-funded and fully insured), and small group ASO plans, are not subject to the requirement to offer coverage for Pediatric Dental EHBs. However, if such plans choose to provide coverage for benefits which are deemed Pediatric Dental EHBs, the ACA requires all dollar limits on those benefits to be removed on all Grandfathered and Non-Grandfathered plans. The determination of which benefits constitute Pediatric Dental EHBs is made on a state by state basis. As such, when using this policy, it is important to refer to the member specific benefit plan document to determine benefit coverage.

COVERAGE RATIONALE

Gingivectomy/Gingivoplasty

Gingivectomy/gingivoplasty is indicated for the following:
- Elimination of suprabony pockets, exceeding 3mm, if the pocket wall is fibrous and firm and there is an adequate zone of keratinized tissue
- Elimination of gingival enlargements/overgrowth due to medications, medical conditions or tooth position
- Elimination of suprabony periodontal abscesses
- For exposure of soft tissue impacted teeth to aid in eruption
- To reestablish gingival contour following an episode of acute necrotizing ulcerative gingivitis
- To allow restorative access, including root surface caries

Gingivectomy/gingivoplasty is not indicated for the following:
- When bone surgery is required for infrabony defects, or for the purpose of examining bone shape and morphology
- Situations in which the bottom of the pocket is apical to the mucogingival junction
- Areas where aesthetics are a concern (particularly in the anterior maxilla)
- In areas with a shallow palatal vault or prominent external oblique ridge
- Severely edematous or inflamed tissue
- Individuals with poor plaque control or non-compliance with non-surgical procedures
- Individuals with an uncontrolled underlying medical condition
- Solely for cosmetic/aesthetic purposes

Anatomical Crown Exposure

Anatomical crown exposure is indicated for the following:
- In an otherwise periodontally healthy area to facilitate the restoration of subgingival caries
- In an otherwise periodontally healthy area to allow proper contour of restoration
- In an otherwise periodontally healthy area to allow management of a fractured tooth in which the fracture extends subgingivally

Anatomical crown exposure is not indicated for the following:
- Solely for cosmetic/aesthetic purposes
- Individuals with an uncontrolled underlying medical condition

Gingival Flap Procedure

Gingival flap procedure is indicated for the following (includes root planing):
- The presence of moderate to deep probing depths
- Loss of attachment
- The need for increased access to root surface and/or alveolar bone when previous non-surgical attempts have been unsuccessful
- The diagnosis of a cracked tooth, fractured root or external root resorption when this cannot be accomplished by non-invasive methods

Gingival flap procedure is not indicated for the following:
- Solely for cosmetic/aesthetic purposes
- Individuals with an uncontrolled underlying medical condition
- Individuals who have been non-compliant with previous periodontal therapies

Apically Positioned Flap Procedure

Apically positioned flap procedure is indicated for the following:
- The presence of moderate to deep probing depths
- Loss of attachment
- The need for increased access to root surface and/or alveolar bone when previous non-surgical attempts have been unsuccessful
- The diagnosis of a cracked tooth, fractured root or external root resorption when this cannot be accomplished by non-invasive methods
- To preserve keratinized tissue in conjunction with osseous surgery

Apically positioned flap procedure is not indicated for the following:
- Solely for cosmetic/aesthetic purposes
- Individuals with an uncontrolled underlying medical condition
- Individuals who have been non-compliant with previous periodontal therapies

Clinical Crown Lengthening-Hard Tissue

Clinical crown lengthening-hard tissue is indicated for the following:
- In an otherwise periodontally healthy area to allow a restorative procedure on a tooth with little to no crown exposure

Clinical crown lengthening-hard tissue is not indicated for the following:
- As treatment for periodontal disease
- Solely for cosmetic/aesthetic purposes
- Individuals with an uncontrolled underlying medical condition

Osseous Surgery

Osseous surgery is indicated for the following:
- Patients with a diagnosis of moderate to advanced periodontal disease
- For cases of refractory periodontal disease
- When less invasive therapy (i.e., non-surgical periodontal therapy, flap procedures) has failed to eliminate disease
Osseous surgery is not indicated for the following:

- Individuals with a diagnosis of mild periodontal disease
- For teeth with a hopeless prognosis (more than 80% bone loss and Class 3 or higher mobility)
- Individuals with an uncontrolled underlying medical condition
- Individuals who have been non-compliant with previous periodontal therapies

Distal or Proximal Wedge (When Not Performed in Conjunction with Surgical Procedures in the Same Anatomical Area)

Distal or proximal wedge procedure is indicated for the following:

- The presence of moderate to deep probing depths (greater than 5mm) on a surface adjacent to an edentulous/terminal tooth area
- The need for increased access to root surface and/or alveolar bone when previous non-surgical attempts have been unsuccessful on a surface adjacent to an edentulous/terminal tooth area
- The diagnosis of a cracked tooth, fractured root or external root resorption on a surface adjacent to an edentulous/terminal tooth area, when this cannot be accomplished by non-invasive methods

Distal or proximal wedge procedure is not indicated for the following:

- Solely for cosmetic/aesthetic purposes
- Individuals with an uncontrolled underlying medical condition
- Individuals who have been non-compliant with previous periodontal therapies
- In areas in which there are teeth with proximal contact

DEFINITIONS

Anatomical Crown: That portion of tooth normally covered by, and including, enamel. (ADA)

Flap: A loosened section of tissue separated from the surrounding tissues except at its base. (ADA)

Furcation: The anatomic area of a multirooted tooth where the roots diverge. A furcation involvement refers to loss of periodontal support in a furcation (ADA, 2016). The Glickman Classification of Tooth Furcation Grading (Sims, 2015):

- **Grade I**
 - Incipient
 - Just barely detectable with examination hand instruments
 - No horizontal component of the furcation is evident on probing
- **Grade II**
 - Early bone loss
 - Examination hand instrument goes partially into the furcation, but not all the way through
 - Furcation may be grade II on both sides of the tooth, but are not connected
- **Grade III**
 - Advanced bone loss
 - Examination hand instrument goes all the way through furcation, to other side of tooth
 - Furcation is through-and-through
- **Grade IV**
 - Through-and-through, plus furcation is clinically visible due to gingival recession

Gingival Flap: A flap that does not extend apical to the mucogingival junction. (ADA)

Gingivectomy: The excision or removal of gingiva. (ADA)

Gingivoplasty: Surgical procedure to reshape gingiva. (ADA)

McGuire Classification of Tooth Prognosis (Levi 2016):

- **Good:** Teeth with adequate periodontal support where the etiologic factors can be controlled, including systemic factors
- **Fair:** No more than 25% attachment loss with Grade 1 furcation invasion which can be maintained. Plaque control and systemic factors can be maintained
- **Poor:** As much as 50% bone loss with Grade II furcation invasions, poor crown: root ratio; mobility greater than Miller Class I; systemic factors; poor patient participation in treatment
- **Questionable:** Teeth with greater than 50% attachment loss; Grade II or III furcation involvements; the tooth is not easily maintained either with professional hygiene or by the patient
Surgical Periodontics: Resective Procedures

Mobility: The movement of a tooth in its socket resulting from an applied force. (AAP) Miller Index of Tooth Mobility (Harpenau 2013):
- Class 0: Normal physiologic tooth movement
- Class I: First distinguishable signs of movement beyond normal
- Class II: Tooth movement up to 1mm in any direction
- Class III: Tooth can be moved more than 1mm in any direction and/or the tooth can be depressed into the socket

Osseous Surgery: Procedures to modify bone support altered by periodontal disease, either by reshaping the alveolar process to achieve physiologic form without the removal of alveolar supporting, or by the removal of some alveolar bone, thus changing the position of the crestal bone relative to the tooth root. (See: Ostectomy; Osteoplasty) (AAP 2001)

Quadrant: One of the four equal sections into which the dental arches can be divided; begins at the midline of the arch and extends distally to the last tooth.

Refractory: Persistent; patients or sites that continue to demonstrate disease after appropriate therapy.

Site: A term used to describe a single area, position, or locus. The word “site” is frequently used to indicate an area of soft tissue recession on a single tooth or an osseous defect adjacent to a single tooth; also used to indicate soft tissue defects and/or osseous defects in edentulous tooth positions (CDT 2018).
- If two contiguous teeth have areas of soft tissue recession, each area of recession is a single site.
- If two contiguous teeth have adjacent but separate osseous defects, each defect is a single site.
- If two contiguous teeth have a communicating interproximal osseous defect, it should be considered a single site.
- All non-communicating osseous defects are single sites.
- All edentulous non-contiguous tooth positions are single sites.
- Depending on the dimensions of the defect, up to two contiguous edentulous tooth positions may be considered a single site.

APPLICABLE CODES

The following list(s) of procedure and/or diagnosis codes is provided for reference purposes only and may not be all inclusive. Listing of a code in this policy does not imply that the service described by the code is a covered or non-covered health service. Benefit coverage for health services is determined by the member specific benefit plan document and applicable laws that may require coverage for a specific service. The inclusion of a code does not imply any right to reimbursement or guarantee claim payment. Other Clinical Policies and Coverage Guidelines may apply.

<table>
<thead>
<tr>
<th>CDT Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>D4210</td>
<td>Gingivectomy or gingivoplasty – four or more contiguous teeth or tooth bounded spaces per quadrant</td>
</tr>
<tr>
<td>D4211</td>
<td>Gingivectomy or gingivoplasty – one to three contiguous teeth or tooth bounded spaces per quadrant</td>
</tr>
<tr>
<td>D4212</td>
<td>Gingivectomy or gingivoplasty to allow access for restorative procedure, per tooth</td>
</tr>
<tr>
<td>D4230</td>
<td>Anatomical crown exposure – four or more contiguous teeth or bounded tooth spaces per quadrant</td>
</tr>
<tr>
<td>D4231</td>
<td>Anatomical crown exposure one to three teeth or bounded tooth spaces per quadrant</td>
</tr>
<tr>
<td>D4240</td>
<td>Gingival flap procedure, including root planing – four or more contiguous teeth or tooth bounded spaces per quadrant</td>
</tr>
<tr>
<td>D4241</td>
<td>Gingival flap procedure, including root planing – one to three contiguous teeth or tooth bounded spaces per quadrant</td>
</tr>
<tr>
<td>D4245</td>
<td>Apically positioned flap</td>
</tr>
<tr>
<td>D4249</td>
<td>Clinical crown lengthening – hard tissue</td>
</tr>
<tr>
<td>D4260</td>
<td>Osseous surgery (including flap entry and closure) – four or more contiguous teeth or tooth bounded spaces per quadrant</td>
</tr>
<tr>
<td>D4261</td>
<td>Osseous surgery (including flap entry and closure) – one to three contiguous teeth or tooth bounded spaces per quadrant</td>
</tr>
</tbody>
</table>
UnitedHealthcare Surgical Periodontics: Resective Procedures

and root planing followed 3 months later by apically repositioned flap surgery at sites with pocket depth greater than 3 months posttherapy). Eighteen patients with chronic periodontitis received initial preparation (IP) including scaling and root planing followed 3 months later by apically repositioned flap surgery at sites with pocket depth greater than

Levy et al. (2002) conducted an investigational study to examine the clinical and microbiologic effects of apically repositioned flap surgery. (This study was intended to extend the findings of a previous study that evaluated the effect of apically repositioned flap surgery on clinical parameters and the composition of the subgingival microbiota at 3 months posttherapy). Eighteen patients with chronic periodontitis received initial preparation (IP) including scaling and root planing followed 3 months later by apically repositioned flap surgery at sites with pocket depth greater than

Serino et al. (2001) performed a clinical trial to determine the initial outcome of non-surgical and surgical periodontal therapy in subjects with advanced disease, as well as the incidence of recurrent disease during 12 years of maintenance following active therapy. There were 64 subjects included in the trial, and all showed signs of generalized gingival inflammation, had a minimum of 12 non-molar teeth with deep pockets (6mm or greater) and with 6mm or greater alveolar bone loss. They were randomly assigned to 2 treatment groups; one surgical (SU) and one non-surgical (SRP). After therapy, all subjects were enrolled in a maintenance care program and were provided with meticulous supportive periodontal therapy and maintenance 3-4 times per year. At these maintenance appointments, sites that bled on gentle probing and had probing depths greater than or equal to 5 mm were treated with subgingival instrumentation. Comprehensive re-examinations were performed after 1, 3, 5 and 13 years of maintenance therapy. It was observed that that surgical therapy was more effective than non-surgical scaling and root planing in reducing the overall mean probing pocket depth and in eliminating deep pockets, and that more non-surgical subjects exhibited signs of advanced disease progression in the 1-3 year period following active therapy than the subjects initially treated surgically. The authors concluded that in subjects with advanced periodontal disease, surgical therapy provides better short and long-term periodontal pocket reduction and may lead to fewer subjects requiring additional adjunctive therapy.

Heitz-Mayfield et al. (2002) conducted a systemic review of the evidence of effectiveness of surgical vs. non-surgical therapy for the treatment of chronic periodontal disease. Sources included the National Library of Medicine computerized bibliographic database MEDLINE, and the Cochrane Oral Health Group (COHG) Specialist Trials Register. The primary outcome measures evaluated were gain in clinical attachment level (CAL) and reduction in probing pocket depth (PPD). Meta-analysis evaluation of these studies indicated that 12 months following treatment, surgical therapy resulted in 0.6 mm more PPD reduction than non-surgical therapy in pockets 6 mm or greater. The authors concluded that both scaling and root planing alone and scaling and root planing combined with flap procedure are effective methods for the treatment of chronic periodontitis in terms of attachment level gain and reduction in gingival inflammation. In the treatment of pocket depths greater than 6 mm, open flap debridement results in greater PPD reduction and clinical attachment gain.

Hayakawa et al. (2012) conducted a retrospective study with the aim of investigating the outcome of surgical periodontal therapy during the period of April 2010 through March 2012 at the General Dentistry, Tokyo Dental College Suidobashi Hospital. The main focus is to compare open flap debridement and regenerative treatment modalities. Following initial periodontal therapy, 17 clinicians performed a total of 138 periodontal surgeries in 80 patients with moderate to advanced periodontitis. Open Flap Debridement was the most commonly performed surgery (74%), followed by 29 regenerative procedures, 7 cases of periodontal plastic surgery, and no cases of guided tissue regeneration. Clinical parameters (probing depth, bleeding on probing and clinical attachment levels) were reduced following initial therapy for all cases, with surgical intervention reducing them further. There was a significant gain in clinical attachment level when regenerative therapy was performed on areas with an initial probing depth greater than 8 mm. The authors concluded that while initial non-surgical therapy improves clinical parameters, open flap debridement surgery results in significantly higher gain in clinical attachment level for probing depths over 6 mm, with periodontal regeneration surgery providing higher gain in areas with probing depths exceeding 8mm.

DESCRIPTION OF SERVICES

The American Academy of Periodontology (AAP) guidelines stress that periodontal health should be achieved in the least invasive and cost effective manner. Using non-surgical periodontal therapy, many individuals can be treated and maintained without the need for surgical intervention. However, surgical procedures may be required when periodontal health cannot be achieved or maintained non-surgically, and may be performed by electrosurgery, lasers or surgical scalpels. Resective periodontal surgery procedures are indicated to eliminate pockets and recontour osseous bone. They may also be indicated when there is a need to expose or lengthen the clinical crown for the completion of restorative procedures.

CLINICAL EVIDENCE

Clarence Mayfield et al. (2002) conducted a systemic review of the evidence of effectiveness of surgical vs. non-surgical therapy for the treatment of chronic periodontal disease. Sources included the Cochrane Oral Health Group (COHG) Specialist Trials Register. The primary outcome measures evaluated were gain in clinical attachment level (CAL) and reduction in probing pocket depth (PPD). Meta-analysis evaluation of these studies indicated that 12 months following treatment, surgical therapy resulted in 0.6 mm more PPD reduction than non-surgical therapy in pockets 6 mm or greater. The authors concluded that both scaling and root planing alone and scaling and root planing combined with flap procedure are effective methods for the treatment of chronic periodontitis in terms of attachment level gain and reduction in gingival inflammation. In the treatment of pocket depths greater than 6 mm, open flap debridement results in greater PPD reduction and clinical attachment gain.

Hayakawa et al. (2012) conducted a retrospective study with the aim of investigating the outcome of surgical periodontal therapy during the period of April 2010 through March 2012 at the General Dentistry, Tokyo Dental College Suidobashi Hospital. The main focus is to compare open flap debridement and regenerative treatment modalities. Following initial periodontal therapy, 17 clinicians performed a total of 138 periodontal surgeries in 80 patients with moderate to advanced periodontitis. Open Flap Debridement was the most commonly performed surgery (74%), followed by 29 regenerative procedures, 7 cases of periodontal plastic surgery, and no cases of guided tissue regeneration. Clinical parameters (probing depth, bleeding on probing and clinical attachment levels) were reduced following initial therapy for all cases, with surgical intervention reducing them further. There was a significant gain in clinical attachment level when regenerative therapy was performed on areas with an initial probing depth greater than 8 mm. The authors concluded that while initial non-surgical therapy improves clinical parameters, open flap debridement surgery results in significantly higher gain in clinical attachment level for probing depths over 6 mm, with periodontal regeneration surgery providing higher gain in areas with probing depths exceeding 8mm.

Levy et al. (2002) conducted an investigational study to examine the clinical and microbiologic effects of apically repositioned flap surgery. (This study was intended to extend the findings of a previous study that evaluated the effect of apically repositioned flap surgery on clinical parameters and the composition of the subgingival microbiota at 3 months posttherapy). Eighteen patients with chronic periodontitis received initial preparation (IP) including scaling and root planing followed 3 months later by apically repositioned flap surgery at sites with pocket depth greater than

CDT Code Table

<table>
<thead>
<tr>
<th>CDT Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>D4274</td>
<td>Mesial/distal wedge procedure, single tooth (when not performed in conjunction with surgical procedures in the same anatomical area)</td>
</tr>
<tr>
<td>D4999</td>
<td>Unspecified periodontal procedure, by report</td>
</tr>
</tbody>
</table>

CDT® is a registered trademark of the American Dental Association
4 mm. All subjects had at least 20 teeth and at least eight sites with pockets greater than 4 mm and eight sites with attachment loss greater than 3 mm. Subjects were monitored clinically and microbiologically at baseline, 3 months after IP, and at 3, 6, 9, and 12 months postsurgery. Clinical assessments of plaque accumulation, gingival redness, suppurative, bleeding on probing, pocket depth, and attachment level were made at six sites per tooth and the presence and levels of 40 subgingival groups of organisms were determined using checkerboard DNA-DNA hybridization. Significant reductions were seen in mean pocket depth, bacterial colonization and percentage of sites exhibiting gingival redness and bleeding on probing in sites that received IP only and in sites receiving IP followed by surgery. Mean attachment level increased significantly for both sets of sites, but the increase was greater at the surgically treated sites. The study indicated that there were beneficial changes in most clinical parameters accompanied by clear reductions in the postpathogenic organisms associated with periodontal disease. One of the most important aspects of this study was the further improvement at sites that received IP only, once periodontal surgery had been completed at the deeper periodontal pockets. The reduction in pocket depth by surgical means and the associated decrease in reservoirs of periodontal pathogens may be important in achieving sustained periodontal stability. Thus, periodontal surgery appears to be an important part of the armamentarium to control periodontal infections. This study supported and extended the findings of the previous study, and described changes not only at sites receiving apically repositioned flap surgery, but also at sites in the same mouth that received IP only. While the major beneficial clinical and microbiologic effect was observed at 3 months after surgery, these beneficial effects were sustained for at least 1 year and conceivably longer.

REFERENCES

American Academy of Periodontology Glossary of Periodontal Terms.
American Dental Association CDT 2018 Dental Procedure Codes.
American Dental Association Glossary of Clinical and Administrative Terms.

POLICY HISTORY/REVISION INFORMATION

<table>
<thead>
<tr>
<th>Date</th>
<th>Action/Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>03/01/2018</td>
<td>• Replaced references to “patients” with “individuals”</td>
</tr>
<tr>
<td></td>
<td>• Updated definitions:</td>
</tr>
</tbody>
</table>

Surgical Periodontics: Resective Procedures
UnitedHealthcare Dental Clinical Policy

Proprietary Information of UnitedHealthcare. Copyright 2018 United HealthCare Services, Inc.
<table>
<thead>
<tr>
<th>Date</th>
<th>Action/Description</th>
</tr>
</thead>
</table>
| | • Removed definition of:
| | ▪ Moderate Chronic Periodontal Disease
| | ▪ Severe Chronic Periodontal Disease
| | • Modified definition of “Site”
| | • Updated supporting information to reflect the most current references
| | • Archived previous policy version DCP013.04 |