CONTINUOUS GLUCOSE MONITORING AND INSULIN DELIVERY FOR MANAGING DIABETES

Policy Number: CS024.Q

Related Community Plan Policy
- Durable Medical Equipment, Orthotics, Ostomy Supplies, Medical Supplies and Repairs/Replacements

Commercial Plan Policy
- Continuous Glucose Monitoring and Insulin Delivery for Managing Diabetes

Medicare Advantage Coverage Summary
- Diabetes Management, Equipment and Supplies

Instructions for Use

APPLICATION

This policy does not apply to the states of Louisiana, Nebraska, New Jersey, and Tennessee.

- For the state of Louisiana, refer to the Medical Policy titled Continuous Glucose Monitoring and Insulin Delivery for Managing Diabetes (for Louisiana Only).
- For the state of Nebraska, refer to the Medical Policy titled Continuous Glucose Monitoring and Insulin Delivery for Managing Diabetes (for Nebraska Only).
- For the state of New Jersey, refer to the Medical Policy titled Continuous Glucose Monitoring and Insulin Delivery for Managing Diabetes (for New Jersey Only).
- For the state of Tennessee, refer to the Medical Policy titled Continuous Glucose Monitoring and Insulin Delivery for Managing Diabetes (for Tennessee Only).

COVERAGE RATIONALE

Insulin Delivery

External insulin pumps that deliver insulin by continuous subcutaneous infusion are proven and medically necessary for managing individuals with type 1 or insulin-requiring type 2 diabetes.

For medical necessity clinical coverage criteria, see MCG™ Care Guidelines, [24th edition, 2020], Insulin Infusion Pump ACG:A-0339 (AC).

Click here to view the MCG™ Care Guidelines.

Note: Programmable disposable external insulin pumps (e.g., Omnipod) are considered clinically equivalent to standard insulin pumps.

Due to insufficient evidence of efficacy, the following devices are unproven and not medically necessary for managing individuals with diabetes:
- Implantable insulin pumps
- Insulin infuser ports
- Nonprogrammable transdermal insulin delivery systems (e.g., V-Go)
Continuous Glucose Monitoring (CGM)

CGM is proven and medically necessary for managing individuals with diabetes in the following circumstances:

- Short-term use (3-7 days) by a healthcare provider for diagnostic purposes
- Long-term use for personal use at home for managing individuals with type 1 diabetes who meet all of the following criteria:
 - Have demonstrated adherence to a physician ordered diabetic treatment plan; and
 - Are on an intensive insulin regimen (3 or more insulin injections per day or insulin pump therapy)

Due to insufficient evidence of efficacy, the following services and/or devices are unproven and not medically necessary for managing individuals with diabetes:

- Long-term CGM for managing individuals with type 2 or gestational diabetes
- CGM using an implantable glucose sensor (e.g., Eversense)
- CGM using a noninvasive device

APPLICABLE CODES

The following list(s) of procedure and/or diagnosis codes is provided for reference purposes only and may not be all inclusive. Listing of a code in this policy does not imply that the service described by the code is a covered or non-covered health service. Benefit coverage for health services is determined by federal, state or contractual requirements and applicable laws that may require coverage for a specific service. The inclusion of a code does not imply any right to reimbursement or guarantee claim payment. Other Policies and Coverage Determination Guidelines may apply.

<table>
<thead>
<tr>
<th>CPT Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0446T</td>
<td>Creation of subcutaneous pocket with insertion of implantable interstitial glucose sensor, including system activation and patient training</td>
</tr>
<tr>
<td>0447T</td>
<td>Removal of implantable interstitial glucose sensor from subcutaneous pocket via incision</td>
</tr>
<tr>
<td>0448T</td>
<td>Removal of implantable interstitial glucose sensor with creation of subcutaneous pocket at different anatomic site and insertion of new implantable sensor, including system activation</td>
</tr>
<tr>
<td>95249</td>
<td>Ambulatory continuous glucose monitoring of interstitial tissue fluid via a subcutaneous sensor for a minimum of 72 hours; patient-provided equipment, sensor placement, hook-up, calibration of monitor, patient training, and printout of recording</td>
</tr>
<tr>
<td>95250</td>
<td>Ambulatory continuous glucose monitoring of interstitial tissue fluid via a subcutaneous sensor for a minimum of 72 hours; physician or other qualified health care professional (office) provided equipment, sensor placement, hook-up, calibration of monitor, patient training, removal of sensor, and printout of recording</td>
</tr>
<tr>
<td>95251</td>
<td>Ambulatory continuous glucose monitoring of interstitial tissue fluid via a subcutaneous sensor for a minimum of 72 hours; analysis, interpretation and report</td>
</tr>
</tbody>
</table>

Coding Clarification: E1399 is often misused when reporting the i-Port device; however, the i-Port device is not durable medical equipment (DME) nor does it have a listed code. E1399 can apply to other unspecified DME devices.

<table>
<thead>
<tr>
<th>HCPCS Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A4226</td>
<td>Supplies for maintenance of insulin infusion pump with dosage rate adjustment using therapeutic continuous glucose sensing, per week</td>
</tr>
<tr>
<td>A9274</td>
<td>External ambulatory insulin delivery system, disposable, each, includes all supplies and accessories</td>
</tr>
<tr>
<td>A9276</td>
<td>Sensor; invasive (e.g., subcutaneous), disposable, for use with interstitial continuous glucose monitoring system, 1 unit = 1 day supply</td>
</tr>
<tr>
<td>A9277</td>
<td>Transmitter; external, for use with interstitial continuous glucose monitoring system</td>
</tr>
<tr>
<td>A9278</td>
<td>Receiver (monitor); external, for use with interstitial continuous glucose monitoring system</td>
</tr>
<tr>
<td>E0784</td>
<td>External ambulatory infusion pump, insulin</td>
</tr>
<tr>
<td>E0787</td>
<td>External ambulatory infusion pump, insulin, dosage rate adjustment using therapeutic continuous glucose sensing</td>
</tr>
<tr>
<td>HCPCS Code</td>
<td>Description</td>
</tr>
<tr>
<td>------------</td>
<td>-------------</td>
</tr>
<tr>
<td>E1399</td>
<td>Durable medical equipment, miscellaneous (Note: The i-Port device is not durable medical equipment (DME) nor does it have a listed code.)</td>
</tr>
<tr>
<td>K0553</td>
<td>Supply allowance for therapeutic continuous glucose monitor (CGM), includes all supplies and accessories, 1 month supply = 1 Unit of Service</td>
</tr>
<tr>
<td>K0554</td>
<td>Receiver (monitor), dedicated, for use with therapeutic glucose continuous monitor system</td>
</tr>
<tr>
<td>S1030</td>
<td>Continuous noninvasive glucose monitoring device, purchase (for physician interpretation of data, use CPT code)</td>
</tr>
<tr>
<td>S1031</td>
<td>Continuous noninvasive glucose monitoring device, rental, including sensor, sensor replacement, and download to monitor (for physician interpretation of data, use CPT code)</td>
</tr>
<tr>
<td>S1034</td>
<td>Artificial pancreas device system (e.g., low glucose suspend [lgs] feature) including continuous glucose monitor, blood glucose device, insulin pump and computer algorithm that communicates with all of the devices</td>
</tr>
<tr>
<td>S1035</td>
<td>Sensor; invasive (e.g., subcutaneous), disposable, for use with artificial pancreas device system</td>
</tr>
<tr>
<td>S1036</td>
<td>Transmitter; external, for use with artificial pancreas device system</td>
</tr>
<tr>
<td>S1037</td>
<td>Receiver (monitor); external, for use with artificial pancreas device system</td>
</tr>
</tbody>
</table>

Coding Clarification: Procedure codes for continuous glucose monitoring (CGM) are unproven and not medically necessary when reported with the following diagnosis codes for type 2 diabetes or gestational diabetes.

<table>
<thead>
<tr>
<th>ICD-10 Diagnosis Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>E11.00</td>
<td>Type 2 diabetes mellitus with hyperosmolarity without nonketotic hyperglycemic-hyperosmolar coma (NKHHC)</td>
</tr>
<tr>
<td>E11.01</td>
<td>Type 2 diabetes mellitus with hyperosmolarity with coma</td>
</tr>
<tr>
<td>E11.10</td>
<td>Type 2 diabetes mellitus with ketoacidosis without coma</td>
</tr>
<tr>
<td>E11.11</td>
<td>Type 2 diabetes mellitus with ketoacidosis with coma</td>
</tr>
<tr>
<td>E11.21</td>
<td>Type 2 diabetes mellitus with diabetic nephropathy</td>
</tr>
<tr>
<td>E11.22</td>
<td>Type 2 diabetes mellitus with diabetic chronic kidney disease</td>
</tr>
<tr>
<td>E11.29</td>
<td>Type 2 diabetes mellitus with other diabetic kidney complication</td>
</tr>
<tr>
<td>E11.311</td>
<td>Type 2 diabetes mellitus with unspecified diabetic retinopathy with macular edema</td>
</tr>
<tr>
<td>E11.319</td>
<td>Type 2 diabetes mellitus with unspecified diabetic retinopathy without macular edema</td>
</tr>
<tr>
<td>E11.3211</td>
<td>Type 2 diabetes mellitus with mild nonproliferative diabetic retinopathy with macular edema, right eye</td>
</tr>
<tr>
<td>E11.3212</td>
<td>Type 2 diabetes mellitus with mild nonproliferative diabetic retinopathy with macular edema, left eye</td>
</tr>
<tr>
<td>E11.3213</td>
<td>Type 2 diabetes mellitus with mild nonproliferative diabetic retinopathy with macular edema, bilateral</td>
</tr>
<tr>
<td>E11.3219</td>
<td>Type 2 diabetes mellitus with mild nonproliferative diabetic retinopathy with macular edema, unspecified eye</td>
</tr>
<tr>
<td>E11.3291</td>
<td>Type 2 diabetes mellitus with mild nonproliferative diabetic retinopathy without macular edema, right eye</td>
</tr>
<tr>
<td>E11.3292</td>
<td>Type 2 diabetes mellitus with mild nonproliferative diabetic retinopathy without macular edema, left eye</td>
</tr>
<tr>
<td>E11.3293</td>
<td>Type 2 diabetes mellitus with mild nonproliferative diabetic retinopathy without macular edema, bilateral</td>
</tr>
<tr>
<td>E11.3299</td>
<td>Type 2 diabetes mellitus with mild nonproliferative diabetic retinopathy without macular edema, unspecified eye</td>
</tr>
<tr>
<td>E11.3311</td>
<td>Type 2 diabetes mellitus with moderate nonproliferative diabetic retinopathy with macular edema, right eye</td>
</tr>
<tr>
<td>E11.3312</td>
<td>Type 2 diabetes mellitus with moderate nonproliferative diabetic retinopathy with macular edema, left eye</td>
</tr>
<tr>
<td>ICD-10 Diagnosis Code</td>
<td>Description</td>
</tr>
<tr>
<td>----------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>E11.3313</td>
<td>Type 2 diabetes mellitus with moderate nonproliferative diabetic retinopathy with macular edema, bilateral</td>
</tr>
<tr>
<td>E11.3319</td>
<td>Type 2 diabetes mellitus with moderate nonproliferative diabetic retinopathy with macular edema, unspecified eye</td>
</tr>
<tr>
<td>E11.3391</td>
<td>Type 2 diabetes mellitus with moderate nonproliferative diabetic retinopathy without macular edema, right eye</td>
</tr>
<tr>
<td>E11.3392</td>
<td>Type 2 diabetes mellitus with moderate nonproliferative diabetic retinopathy without macular edema, left eye</td>
</tr>
<tr>
<td>E11.3393</td>
<td>Type 2 diabetes mellitus with moderate nonproliferative diabetic retinopathy without macular edema, bilateral</td>
</tr>
<tr>
<td>E11.3399</td>
<td>Type 2 diabetes mellitus with moderate nonproliferative diabetic retinopathy without macular edema, unspecified eye</td>
</tr>
<tr>
<td>E11.3411</td>
<td>Type 2 diabetes mellitus with severe nonproliferative diabetic retinopathy with macular edema, right eye</td>
</tr>
<tr>
<td>E11.3412</td>
<td>Type 2 diabetes mellitus with severe nonproliferative diabetic retinopathy with macular edema, left eye</td>
</tr>
<tr>
<td>E11.3413</td>
<td>Type 2 diabetes mellitus with severe nonproliferative diabetic retinopathy with macular edema, bilateral</td>
</tr>
<tr>
<td>E11.3419</td>
<td>Type 2 diabetes mellitus with severe nonproliferative diabetic retinopathy with macular edema, unspecified eye</td>
</tr>
<tr>
<td>E11.3491</td>
<td>Type 2 diabetes mellitus with severe nonproliferative diabetic retinopathy without macular edema, right eye</td>
</tr>
<tr>
<td>E11.3492</td>
<td>Type 2 diabetes mellitus with severe nonproliferative diabetic retinopathy without macular edema, left eye</td>
</tr>
<tr>
<td>E11.3493</td>
<td>Type 2 diabetes mellitus with severe nonproliferative diabetic retinopathy without macular edema, bilateral</td>
</tr>
<tr>
<td>E11.3499</td>
<td>Type 2 diabetes mellitus with severe nonproliferative diabetic retinopathy without macular edema, unspecified eye</td>
</tr>
<tr>
<td>E11.3511</td>
<td>Type 2 diabetes mellitus with proliferative diabetic retinopathy with macular edema, right eye</td>
</tr>
<tr>
<td>E11.3512</td>
<td>Type 2 diabetes mellitus with proliferative diabetic retinopathy with macular edema, left eye</td>
</tr>
<tr>
<td>E11.3513</td>
<td>Type 2 diabetes mellitus with proliferative diabetic retinopathy with macular edema, bilateral</td>
</tr>
<tr>
<td>E11.3519</td>
<td>Type 2 diabetes mellitus with proliferative diabetic retinopathy with macular edema, unspecified eye</td>
</tr>
<tr>
<td>E11.3521</td>
<td>Type 2 diabetes mellitus with proliferative diabetic retinopathy with traction retinal detachment involving the macula, right eye</td>
</tr>
<tr>
<td>E11.3522</td>
<td>Type 2 diabetes mellitus with proliferative diabetic retinopathy with traction retinal detachment involving the macula, left eye</td>
</tr>
<tr>
<td>E11.3523</td>
<td>Type 2 diabetes mellitus with proliferative diabetic retinopathy with traction retinal detachment involving the macula, bilateral</td>
</tr>
<tr>
<td>E11.3529</td>
<td>Type 2 diabetes mellitus with proliferative diabetic retinopathy with traction retinal detachment involving the macula, unspecified eye</td>
</tr>
<tr>
<td>E11.3531</td>
<td>Type 2 diabetes mellitus with proliferative diabetic retinopathy with traction retinal detachment not involving the macula, right eye</td>
</tr>
<tr>
<td>E11.3532</td>
<td>Type 2 diabetes mellitus with proliferative diabetic retinopathy with traction retinal detachment not involving the macula, left eye</td>
</tr>
<tr>
<td>E11.3533</td>
<td>Type 2 diabetes mellitus with proliferative diabetic retinopathy with traction retinal detachment not involving the macula, bilateral</td>
</tr>
<tr>
<td>E11.3539</td>
<td>Type 2 diabetes mellitus with proliferative diabetic retinopathy with traction retinal detachment not involving the macula, unspecified eye</td>
</tr>
<tr>
<td>E11.3541</td>
<td>Type 2 diabetes mellitus with proliferative diabetic retinopathy with combined traction retinal detachment and rhegmatogenous retinal detachment, right eye</td>
</tr>
<tr>
<td>ICD-10 Diagnosis Code</td>
<td>Description</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---</td>
</tr>
<tr>
<td>E11.3542</td>
<td>Type 2 diabetes mellitus with proliferative diabetic retinopathy with combined traction retinal detachment and rhegmatogenous retinal detachment, left eye</td>
</tr>
<tr>
<td>E11.3543</td>
<td>Type 2 diabetes mellitus with proliferative diabetic retinopathy with combined traction retinal detachment and rhegmatogenous retinal detachment, bilateral</td>
</tr>
<tr>
<td>E11.3549</td>
<td>Type 2 diabetes mellitus with proliferative diabetic retinopathy with combined traction retinal detachment and rhegmatogenous retinal detachment, unspecified eye</td>
</tr>
<tr>
<td>E11.3551</td>
<td>Type 2 diabetes mellitus with stable proliferative diabetic retinopathy, right eye</td>
</tr>
<tr>
<td>E11.3552</td>
<td>Type 2 diabetes mellitus with stable proliferative diabetic retinopathy, left eye</td>
</tr>
<tr>
<td>E11.3553</td>
<td>Type 2 diabetes mellitus with stable proliferative diabetic retinopathy, bilateral</td>
</tr>
<tr>
<td>E11.3559</td>
<td>Type 2 diabetes mellitus with stable proliferative diabetic retinopathy, unspecified eye</td>
</tr>
<tr>
<td>E11.3591</td>
<td>Type 2 diabetes mellitus with proliferative diabetic retinopathy without macular edema, right eye</td>
</tr>
<tr>
<td>E11.3592</td>
<td>Type 2 diabetes mellitus with proliferative diabetic retinopathy without macular edema, left eye</td>
</tr>
<tr>
<td>E11.3593</td>
<td>Type 2 diabetes mellitus with proliferative diabetic retinopathy without macular edema, bilateral</td>
</tr>
<tr>
<td>E11.3599</td>
<td>Type 2 diabetes mellitus with proliferative diabetic retinopathy without macular edema, unspecified eye</td>
</tr>
<tr>
<td>E11.36</td>
<td>Type 2 diabetes mellitus with diabetic cataract</td>
</tr>
<tr>
<td>E11.37X1</td>
<td>Type 2 diabetes mellitus with diabetic macular edema, resolved following treatment, right eye</td>
</tr>
<tr>
<td>E11.37X2</td>
<td>Type 2 diabetes mellitus with diabetic macular edema, resolved following treatment, left eye</td>
</tr>
<tr>
<td>E11.37X3</td>
<td>Type 2 diabetes mellitus with diabetic macular edema, resolved following treatment, bilateral</td>
</tr>
<tr>
<td>E11.37X9</td>
<td>Type 2 diabetes mellitus with diabetic macular edema, resolved following treatment, unspecified eye</td>
</tr>
<tr>
<td>E11.39</td>
<td>Type 2 diabetes mellitus with other diabetic ophthalmic complication</td>
</tr>
<tr>
<td>E11.40</td>
<td>Type 2 diabetes mellitus with diabetic neuropathy, unspecified</td>
</tr>
<tr>
<td>E11.41</td>
<td>Type 2 diabetes mellitus with diabetic mononeuropathy</td>
</tr>
<tr>
<td>E11.42</td>
<td>Type 2 diabetes mellitus with diabetic polyneuropathy</td>
</tr>
<tr>
<td>E11.43</td>
<td>Type 2 diabetes mellitus with diabetic autonomic (poly)neuropathy</td>
</tr>
<tr>
<td>E11.44</td>
<td>Type 2 diabetes mellitus with diabetic amyotrophy</td>
</tr>
<tr>
<td>E11.49</td>
<td>Type 2 diabetes mellitus with other diabetic neurological complication</td>
</tr>
<tr>
<td>E11.51</td>
<td>Type 2 diabetes mellitus with diabetic peripheral angiopathy without gangrene</td>
</tr>
<tr>
<td>E11.52</td>
<td>Type 2 diabetes mellitus with diabetic peripheral angiopathy with gangrene</td>
</tr>
<tr>
<td>E11.59</td>
<td>Type 2 diabetes mellitus with other circulatory complications</td>
</tr>
<tr>
<td>E11.610</td>
<td>Type 2 diabetes mellitus with diabetic neuropathic arthropathy</td>
</tr>
<tr>
<td>E11.618</td>
<td>Type 2 diabetes mellitus with other diabetic arthropathy</td>
</tr>
<tr>
<td>E11.620</td>
<td>Type 2 diabetes mellitus with diabetic dermatitis</td>
</tr>
<tr>
<td>E11.621</td>
<td>Type 2 diabetes mellitus with foot ulcer</td>
</tr>
<tr>
<td>E11.622</td>
<td>Type 2 diabetes mellitus with other skin ulcer</td>
</tr>
<tr>
<td>E11.628</td>
<td>Type 2 diabetes mellitus with other skin complications</td>
</tr>
<tr>
<td>E11.630</td>
<td>Type 2 diabetes mellitus with periodontal disease</td>
</tr>
<tr>
<td>E11.638</td>
<td>Type 2 diabetes mellitus with other oral complications</td>
</tr>
<tr>
<td>E11.641</td>
<td>Type 2 diabetes mellitus with hypoglycemia with coma</td>
</tr>
<tr>
<td>E11.649</td>
<td>Type 2 diabetes mellitus with hypoglycemia without coma</td>
</tr>
<tr>
<td>E11.65</td>
<td>Type 2 diabetes mellitus with hyperglycemia</td>
</tr>
<tr>
<td>E11.69</td>
<td>Type 2 diabetes mellitus with other specified complication</td>
</tr>
</tbody>
</table>
ICD-10 Diagnosis Code | Description
--- | ---
E11.8 | Type 2 diabetes mellitus with unspecified complications
E11.9 | Type 2 diabetes mellitus without complications
O24.111 | Pre-existing type 2 diabetes mellitus, in pregnancy, first trimester
O24.112 | Pre-existing type 2 diabetes mellitus, in pregnancy, second trimester
O24.113 | Pre-existing type 2 diabetes mellitus, in pregnancy, third trimester
O24.119 | Pre-existing type 2 diabetes mellitus, in pregnancy, unspecified trimester
O24.12 | Pre-existing type 2 diabetes mellitus, in childbirth
O24.13 | Pre-existing type 2 diabetes mellitus, in the puerperium
O24.410 | Gestational diabetes mellitus in pregnancy, diet controlled
O24.414 | Gestational diabetes mellitus in pregnancy, insulin controlled
O24.415 | Gestational diabetes mellitus in pregnancy, controlled by oral hypoglycemic drugs
O24.419 | Gestational diabetes mellitus in pregnancy, unspecified control
O24.430 | Gestational diabetes mellitus in the puerperium, diet controlled
O24.434 | Gestational diabetes mellitus in the puerperium, insulin controlled
O24.435 | Gestational diabetes mellitus in the puerperium, controlled by oral hypoglycemic drugs
O24.439 | Gestational diabetes mellitus in the puerperium, unspecified control

DESCRIPTION OF SERVICES

Diabetes mellitus can be classified into the following general categories (American Diabetes Association, 2019):

- Type 1 diabetes (due to autoimmune beta-cell destruction, usually leading to absolute insulin deficiency)
- Type 2 diabetes (due to a progressive loss of beta-cell insulin secretion frequently on the background of insulin resistance)
- Gestational diabetes mellitus (GDM) (diabetes diagnosed in the second or third trimester of pregnancy that was not clearly overt diabetes prior to pregnancy). GDM resembles type 2 diabetes and usually disappears after childbirth.
- Other subtypes of diabetes have been identified. The most common subtype is latent autoimmune diabetes in adults (LADA). LADA can be classified as a more slowly progressing variation of type 1 diabetes, yet it is often misdiagnosed as type 2.

If poorly controlled, diabetes can lead to complications such as heart disease, stroke, peripheral vascular disease, retinal damage, kidney disease, nerve damage and impotence. In gestational diabetes, fetal and maternal health can be compromised.

Improved glycemic control has been shown to slow the onset or progression of major complications. Management of diabetes involves efforts to maintain blood glucose levels near the normal range. Self-monitoring of blood glucose (SMBG) and laboratory testing of glycosylated hemoglobin (A1C) to measure longer term glycemic control are standard methods for glucose testing (Handelsman et al 2015; ADA, 2019).

Insulin Delivery

Standard external insulin pumps connect to a flexible plastic tubing that ends with a needle inserted through the skin into the fatty tissue. Another type of insulin pump (OmniPod®) combines an insulin reservoir placed on the skin with a wireless device to manage dosing and perform SMBG. Both types of devices can be programmed to release small doses of insulin continuously (basal), or a bolus dose close to mealtime to control the rise in blood glucose after a meal. Newer patch devices (e.g., V-Go®) deliver preset dosages of insulin transdermally and lack programmability.

Implantable insulin pumps are placed inside the body to deliver insulin in response to remote-control commands from the user (ADA website).

An insulin infuser port is a device used to reduce the number of needle injections for individuals with insulin-dependent diabetes. An insertion needle guides a soft cannula into the subcutaneous tissue. Once applied, the insertion needle is removed, leaving the soft cannula under the skin to act as a direct channel into the subcutaneous tissue. Insulin is then injected through the cannula using a standard needle and syringe or insulin pen. Devices remain in place for up to 72 hours to accommodate multiple drug injections without additional needle sticks.
Continuous Glucose Monitors (CGM)

CGM devices continuously monitor and record interstitial fluid glucose levels and have three components: a sensor, transmitter and receiver. Some CGM systems are designed for short-term diagnostic or professional use. These devices store retrospective information for review at a later time. Other CGM systems are designed for long-term personal use and display information in real-time allowing the individual to take action based on the data (American Medical Association, 2009). For most devices, glucose measurements provided during continuous monitoring are not intended to replace standard SMBG obtained using fingerstick blood samples, but can alert individuals of the need to perform SMBG. These long-term devices are available with or without an integrated external insulin pump. A review by Messer et al. (2019) highlights clinically relevant aspects of newer advanced diabetes devices.

Implantable CGM includes a small sensor, smart transmitter and mobile application. Based on fluorescence sensing technology, the sensor is designed to be inserted subcutaneously and communicate with the smart transmitter to wirelessly transmit glucose levels to a mobile device.

BENEFIT CONSIDERATIONS

For details regarding repair and replacement coverage, see the Coverage Determination Guideline titled [Durable Medical Equipment, Orthotics, Ostomy Supplies, Medical Supplies and Repairs/Replacements](#).

CLINICAL EVIDENCE

Insulin Delivery

Karges et al. (2017) reported evidence for improved clinical outcomes associated with insulin pump therapy compared with insulin injection therapy in young patients with type 1 diabetes. In a population-based cohort study of 30,579 patients (mean age, 14.1 years; 53% male), 14,119 used pump therapy (median duration, 3.7 years) and 16,460 used insulin injections (median duration, 3.6 years). Pump therapy, compared with injection therapy, was associated with lower rates of severe hypoglycemia and diabetic ketoacidosis, and with better glycemic control during the most recent year of therapy. Total daily insulin doses were lower for pump therapy compared with injection therapy.

Reznik et al. (2014) conducted an international multicenter, randomized controlled trial (RCT) comparing insulin pump treatment with multiple daily injections (MDI) for patients with poorly controlled type 2 diabetes. A total of 331 patients with an HbA1c of 8.0-12.0% were randomly assigned to pump treatment (n=168) or to continue with MDIs (n=163). Mean HbA1c at baseline was 9% in both groups. Neither patients nor investigators were masked to treatment allocation. The primary endpoint was change in mean HbA1c between baseline and end of the randomized phase. At 6 months, mean HbA1c had decreased by 1.1% in the pump treatment group and 0.4% in the MDI group. At the end of the study, the mean total daily insulin dose was 97 units with pump treatment versus 122 units for MDI with no significant difference in bodyweight change between the two groups. Two diabetes-related serious adverse events (hyperglycemia or ketosis without acidosis) resulting in hospitalization occurred in the pump treatment group compared with one in the MDI group. No ketoacidosis occurred in either group and one episode of severe hypoglycemia occurred in the MDI group. The authors concluded that in patients with poorly controlled type 2 diabetes, despite using MDIs of insulin, pump treatment can be considered as a safe and valuable treatment option.

A systematic review and meta-analysis conducted by the Agency for Healthcare Research and Quality (AHRQ) (Golden et al., 2012) compared insulin pumps with MDI and found no differences in glycemic control or weight gain, as well as insufficient evidence on hypoglycemic events, mortality and other clinical outcomes. Although recent trials have provided some evidence of clinical benefit, these have suffered from methodological concerns and use of nonstandard outcomes. Findings from the evidence base of eight RCTs suggests a moderate level of certainty that insulin pumps provide a comparable net health benefit to MDIs in patient with type 2 diabetes (Institute for Clinical and Economic Review, 2014).

Bergenstal et al. (2010) conducted a multicenter, randomized, controlled trial comparing the efficacy of sensor-augmented pump therapy (pump therapy) to that of multiple daily insulin injections (injection therapy) in 329 adults and 156 children (ages 7 through 70 years) with inadequately controlled type 1 diabetes. The primary end point was the change from the baseline glycated hemoglobin level. At one year, the researchers found that the pump-therapy group had glycated hemoglobin levels that were significantly lower than the injection-therapy group. The baseline mean glycated hemoglobin level, which was 8.3% in the two study groups, had decreased to 7.5% in the pump therapy group, compared with 8.1% in the injection therapy group. The proportion of patients who reached the glycated hemoglobin target (<7%) was greater in the pump-therapy group than in the injection-therapy group. The rates of severe hypoglycemia and diabetic ketoacidosis in the pump-therapy group did not differ significantly from the injection-therapy group. The study concluded that sensor-augmented pump therapy resulted in significant improvement in glycated hemoglobin levels, as compared with injection therapy.
In a meta-analysis, Fatourechi et al. (2009) summarized the evidence on the effect of continuous insulin infusion (CSII) and MDIs on glycemic control and hypoglycemia. Patients with type 1 diabetes using CSII had slightly lower HbA1c, with no significant difference in severe or nocturnal hypoglycemia. Adolescents and adults with type 1 diabetes enrolled in crossover trials had nonsignificantly fewer minor hypoglycemia episodes per patient per week with CSII than MDI; children enrolled in parallel trials had significantly more episodes. Outcomes were not different in patients with type 2 diabetes. Contemporary evidence indicates that compared to MDI, CSII slightly reduced HbA1c in adults with type 1 diabetes, with unclear impact on hypoglycemia. In type 2 diabetes, CSII and MDI had similar outcomes. The authors stated that the effect in patients with hypoglycemia unawareness or recurrent severe hypoglycemia remains unclear because of lack of data.

Pickup and Sutton (2008) conducted a meta-analysis of 22 studies comparing severe hypoglycemia and glycemic control during continuous subcutaneous insulin infusion (CSII) and multiple daily insulin injections (MDI). The severe hypoglycemia rate in type 1 diabetes was markedly less during CSII than MDI, with the greatest reduction in those with most severe hypoglycemia on MDI and those with the longest duration of diabetes. The biggest improvement in HbA1c was in those with the highest HbA1c on MDI.

In a meta-analysis, Jeitler et al. (2008) compared the effects of CSII with those of MDIs on glycemic control, risk of hypoglycemic episodes, insulin requirements and adverse events in type 1 and type 2 diabetes mellitus. Twenty-two studies were included (17 on type 1 diabetes mellitus, two on type 2 diabetes mellitus, three on children). CSII therapy in adults and adolescents with type 1 diabetes resulted in a greater reduction of glycated hemoglobin. Total daily insulin requirements were lower with CSII than with MDI therapy. No beneficial effect of CSII therapy could be detected for patients with type 2 diabetes mellitus. No overall conclusions were possible for severe hypoglycemia and adverse events for any of the different patient groups due to rareness of such events, different definitions and insufficient reporting.

In a Cochrane review, Farrar et al. (2007) compared CSII with MDI of insulin for pregnant women with diabetes. The review found a lack of robust evidence to support the use of one particular form of insulin administration over another for pregnant women with diabetes. The data are limited because of the small number of trials appropriate for meta-analysis, small study sample size and questionable generalizability of the trial population. Conclusions cannot be made from the data available and therefore a robust randomized trial is needed. Assessed as up-to-date September 2011.

The Diabetes Control and Complications Trial (DCCT) demonstrated that tight glycemic control achieved with intensive insulin regimens significantly delayed the onset and slowed the progression of retinopathy, nephropathy or neuropathy in patients with type 1 or 2 diabetes. Elements of intensive therapy included testing blood glucose levels four or more times a day, injecting insulin at least three times daily or using an insulin pump, adjusting insulin doses according to food intake and exercise, following a diet and exercise plan and making monthly visits to a health care team (DCCT, 1993).

Nonprogrammable Transdermal Insulin Delivery

Hayes reported that an overall very-low-quality body of evidence does not allow for conclusions to be drawn regarding the safety and efficacy of the V-Go system. Although the evidence consistently suggests that V-Go therapy is associated with improved glycemic control in patients with type 1 or type 2 diabetes, the body of evidence comprised poor- to very-poor-quality studies of relatively small size. The quality of the body of evidence was also limited by the lack of comparative studies, lack of prospective study designs, limited data on outcomes associated with longer-term use, likely patient overlap between 2 of the 4 eligible studies and manufacturer support of all of the eligible studies. It is also unknown whether administering insulin with the V-Go device has a greater impact on sustained glycemic control than administration of insulin via MDIs. No systematic reviews or meta-analyses evaluating V-Go were identified (Hayes, 2018a).

Several retrospective chart reviews suggest that V-Go therapy is associated with improved glycemic control; however, these studies are limited by retrospective design, small sample size and short-term follow-up. Further well-designed, prospective studies are needed to establish the safety and efficacy of this device in managing patients with diabetes (Raval et al., 2019; Sutton et al., 2018; Lajara et al., 2016; Lajara et al., 2015; Rosenfeld et al., 2012).

Implantable Insulin Pumps

Implantable insulin pumps are a promising new technology for the treatment of insulin-dependent diabetes but at this time are only available in a clinical trial setting.

Insulin Infuser Ports

Khan et al. (2019) conducted a prospective study evaluating the i-Port system in 55 insulin-treated patients. Of the 55 patients, 93% had type 1 diabetes and used an insulin pen. Patients were divided into two groups: regular users of the i-Port (n=27), who used it for ≥3 months, and irregular users (n=28), who used it for <3 months. Irregular users had a longer duration of diabetes at baseline compared to regular users, were less likely to report noncompliance with
insulin usage, were more likely to self-inject insulin and had a lower A1c. Although there were fewer hospitalizations and hypoglycemic episodes, and compliance improved with i-Port usage, there were no statistical differences between groups in treatment satisfaction or mean glycemic control scores.

Blevins et al. (2008) conducted a prospective, randomized controlled cross-over trial comparing the outcomes of insulin-dependent diabetics (n=74) who used the i-Port compared to standard multi-injection insulin therapy. Type 1 (n=56) and type 2 (n=18) diabetics were randomly assigned to one of four cohort groups. Cohort 1 (n=18) compared standard injections (SI) to single i-Port, cohort 2 (n=20) compared single i-Port to SI, cohort 3 (n=18) compared dual i-Ports to single i-Port and cohort 4 (n=18) compared single i-Port to dual i-Ports. At the end of the first three weeks, each group switched to the alternative method for an additional three weeks. Ten participants were lost to follow-up, six of which were due to device related issues (adhesive failure, discomfort, hyperglycemia, cannula bends and adverse events). Participant’s glycosylated albumin was not significantly different between SI, single i-Port and dual i-Port treatment regiments. A1c levels were similar among all cohorts at the initiation and completion of the study. Adverse events included erythema, suppuration, skin irritation, itching, and bruising at the i-Port insertion site. Three events of severe hyperglycemia were also reported.

Continuous Glucose Monitoring

Type 1 Diabetes

In the multicenter, randomized controlled CONCEPTT trial, Feig et al. (2017) evaluated the effectiveness of CGM on maternal glucose control and obstetric and neonatal health outcomes in women with type 1 diabetes. Investigators ran two trials in parallel for pregnant participants and for participants planning pregnancy. A total of 325 women (215 pregnant, 110 planning pregnancy) were randomly assigned to capillary glucose monitoring with CGM (108 pregnant, 53 planning pregnancy) or without (107 pregnant, 57 planning pregnancy). Randomization was stratified by insulin delivery (pump or injections) and baseline HbA1c. The primary outcome was change in HbA1c from randomization to 34 weeks’ gestation in pregnant women and to 24 weeks or conception in women planning pregnancy. Secondary outcomes included obstetric and neonatal health outcomes. The CGM group had a small but significant reduction in HbA1c levels at 34 weeks’ gestation compared to the control group. Pregnant CGM users also spent more time in target glycemic control range and less time in the hyperglycemic range than did pregnant control participants. Neonatal health outcomes were significantly improved in the CGM group, with a lower proportion of infants who were large for their gestational age, fewer neonatal intensive care admissions lasting more than 24 hours, less neonatal hypoglycemia and shorter length of hospital stay. CGM offered no benefit to women planning pregnancy.

In a multicenter, open-label, crossover study, Lind et al. (2017) evaluated the effects of CGM in 161 adults with type 1 diabetes and HbA1c of at least 7.5% (58 mmol/mol) treated with MDIs. Participants were randomized to receive treatment using a CGM system or conventional treatment for 26 weeks, separated by a washout period of 17 weeks. Mean HbA1c was 7.92% (63 mmol/mol) during CGM use and 8.35% (68 mmol/mol) during conventional treatment. Of 19 secondary end points comprising psychosocial and various glycemic measures, 6 met the hierarchical testing criteria of statistical significance, favoring CGM compared with conventional treatment. Among patients with inadequately controlled type 1 diabetes treated with MDIs, the use of CGM compared with conventional treatment for 26 weeks resulted in lower HbA1c.

In the multicenter, randomized controlled DIAMOND trial, Beck et al. (2017a) evaluated the effectiveness of CGM in 158 adults with type 1 diabetes who were using MDIs and had hemoglobin A1c (HbA1c) levels of 7.5% to 9.9%. Patients were randomized 2:1 to CGM (n=105) or usual care (n=53). The use of CGM compared with usual care resulted in a greater decrease in HbA1c level during 24 weeks.

National Institute for Health and Care Excellence (NICE) guidelines on the diagnosis and management of type 1 diabetes in adults make the following recommendations regarding CGM (August 2015; updated July 2016):

- Do not offer real-time CGM (rt-CGM) routinely to adults with type 1 diabetes.
- Consider rt-CGM for adults with type 1 diabetes who are willing to commit to using it at least 70% of the time and to calibrate it as needed, and who have any of the following despite optimized use of insulin therapy and conventional blood glucose monitoring:
 - More than 1 episode a year of severe hypoglycemia with no obviously preventable precipitating cause
 - Complete loss of awareness of hypoglycemia
 - Frequent (more than 2 episodes a week) asymptomatic hypoglycemia that is causing problems with daily activities
 - Extreme fear of hypoglycemia
 - Hyperglycemia (HbA1c level of 75 mmol/mol [9%] or higher) that persists despite testing at least 10 times a day. Continue rt-CGM only if HbA1c can be sustained at or below 53 mmol/mol (7%) and/or there has been a fall in HbA1c of 27 mmol/mol (2.5%) or more.
- For adults with type 1 diabetes who are having rt-CGM, use the principles of flexible insulin therapy with either MDIs or CSII
NICE guidelines on the diagnosis and management of diabetes in children and young people make the following recommendations regarding CGM (August 2015; updated November 2016):

- Offer ongoing rt-CGM with alarms to children and young people with type 1 diabetes who have:
 - Frequent severe hypoglycemia; or
 - Impaired awareness of hypoglycemia associated with adverse consequences (e.g., seizures or anxiety) or inability to recognize, or communicate about, symptoms of hypoglycemia (e.g., because of cognitive or neurological disabilities)
- Consider ongoing rt-CGM for:
 - Neonates, infants and pre-school children
 - Children and young people who undertake high levels of physical activity
 - Children and young people who have comorbidities or who are receiving treatments that can make blood glucose control difficult
- Consider intermittent (real-time or retrospective) CGM to help improve blood glucose control in children and young people who continue to have hyperglycemia despite insulin adjustment and additional support

The Agency for Healthcare Research and Quality (AHRQ) published a comparative effectiveness review of glucose monitoring methods for diabetes. Studies suggested that real-time continuous glucose monitoring (rt-CGM) was superior to self-monitoring of blood glucose (SMBG) in lowering HbA1c in nonpregnant individuals with type 1 diabetes, particularly when compliance was high, without affecting the risk of severe hypoglycemia. rt-CGM/CSII in the form of sensor-augmented pumps was superior to MDI/SMBG in lowering HbA1c in the research studies analyzed in this review; however, other combinations of these insulin delivery and glucose monitoring modalities were not evaluated (Golden et al., 2012).

A meta-analysis of fourteen RCTs (n=1188) evaluated the use of CGM in patients with type 1 diabetes. Compared to SMBG, the use of CGM was associated with a greater reduction in HbA1c. The number of hypoglycemic events was not significantly different between the two groups, but duration of hypoglycemia was shorter for the CGM group, with an incremental reduction of hypoglycemia duration. CGM also resulted in a shorter duration of hyperglycemia than SMBG (Floyd et al., 2012).

In a Cochrane review, Langendam et al. (2012) assessed the effects of CGM systems compared to conventional SMBG in patients with Type 1 diabetes. Twenty-two RCTs comparing retrospective or rt-CGM with conventional SMBG levels or with another type of CGM system in patients with type 1 diabetes mellitus were included. The studies randomized 2883 patients with type 1 diabetes to receive a form of CGM or to use SMBG using fingerprick. The duration of follow-up varied between 3 and 18 months; most studies reported results for six months of CGM use. This review shows that CGM helps in lowering the HbA1c. In most studies the HbA1c value decreased in both the CGM and the SMBG users, but more in the CGM group. The difference in change in HbA1c levels between the groups was on average 0.7% for patients starting on an insulin pump with integrated CGM and 0.2% for patients starting with CGM alone. The most important adverse events, severe hypoglycemia and ketoacidosis did not occur frequently in the studies, and absolute numbers were low (9% of the patients, measured over six months). Diabetes complications, death from any cause and costs were not measured. There are no data on pregnant women with Type 1 diabetes and patients with diabetes who are not aware of hypoglycemia.

Mauras et al. (2012) assessed the benefit of CGM in young children aged 4 to 9 years with type 1 diabetes. A total of 146 children with type 1 diabetes (mean age 7.5 ± 1.7 years) were randomly assigned to CGM or to usual care. The primary outcome was reduction in HbA1c at 26 weeks by ≥0.5% without the occurrence of severe hypoglycemia. The primary outcome was achieved by 19% in the CGM group and 28% in the control group. Mean change in HbA1c was -0.1% in each group. Severe hypoglycemia rates were similarly low in both groups. CGM wear decreased over time, with only 41% averaging at least 6 days/week at 26 weeks. There was no correlation between CGM use and change in HbA1c. The authors concluded that CGM in 4- to 9-year-olds did not improve glycemic control despite a high degree of parental satisfaction with CGM. This finding may be related to limited use of the CGM glucose data in day-to-day management and to an unremitting fear of hypoglycemia.

Szypowska et al. (2012) conducted a systematic review and meta-analysis to explore the potential beneficial effects of rt-CGM on diabetes management compared with self blood glucose measurement (SBGM) in patients with type 1 diabetes. Seven RCTs (n=948) were included. Combined data from all studies showed better HbA1c reduction in subjects using RT-CGM compared with those using SBGM. Patients treated with insulin pump and RT-CGM had a lower HbA1c level compared with subjects managed with insulin pump and SBGM (four RCTs, n=497) The benefits of applying RT-CGM were not associated with an increase in rate of major hypoglycemic episodes. The use of RT-CGM for over 60-70% of time was associated with a significant lowering of HbA1c. The authors concluded that RT-CGM is more beneficial than SBGM in reducing HbA1c in patients with type 1 diabetes. Further studies are needed to evaluate the efficacy of this system in the pediatric population, especially in very young children.
Hoeks et al. (2011) performed a systematic review of seven RCTs evaluating the effect of rt-CGM systems in diabetes management. The analysis concluded that rt-CGM has a beneficial effect on glycemic control in adult patients with diabetes, without an increase in the incidence of hypoglycemia. Studies in well-selected patient groups (pregnancy, history of severe hypoglycemia, type 2 diabetes) are lacking.

In a randomized, controlled multicenter study, Battelino et al. (2011) assessed the impact of CGM on hypoglycemia in patients with type 1 diabetes. A total of 120 children and adults on intensive therapy for type 1 diabetes and an A1c <7.5 were randomly assigned to a control group performing SMBG and wearing a masked continuous glucose monitor every second week for five days or to a group with rt-CGM. CGM was associated with reduced time spent in hypoglycemia and a concomitant decrease in HbA1c in children and adults with type 1 diabetes.

The Juvenile Diabetes Research Foundation sponsored a multicenter, RCT evaluating the use of CGM in the management of type 1 diabetes mellitus. The investigators randomly assigned 322 adults and children who were already receiving intensive therapy for type 1 diabetes to a group with CGM or to a control group performing home monitoring with a blood glucose meter. All the patients were stratified into three groups according to age and had a glycated hemoglobin level of 7.0 to 10.0%. The primary outcome was the change in the glycated hemoglobin level at 26 weeks. The changes in glycated hemoglobin levels in the two study groups varied markedly according to age group (P=0.003), with a significant difference among patients 25 years of age or older that favored the continuous-monitoring group (mean difference in change, -0.53%; 95% confidence interval [CI], -0.71 to -0.35; P<0.001). The between-group difference was not significant among those who were 15 to 24 years of age (mean difference, 0.08; 95% CI, -0.17 to 0.33; P=0.52) or among those who were 8 to 14 years of age (mean difference, -0.13; 95% CI, -0.38 to 0.11; P=0.29). Secondary glycated hemoglobin outcomes were better in the continuous-monitoring group than in the control group among the oldest and youngest patients but not among those who were 15 to 24 years of age. The investigators concluded that CGM can be associated with improved glycemic control in adults with type 1 diabetes; however, further work is needed to identify barriers to effectiveness of continuous monitoring in children and adolescents (Juvenile Diabetes Research Foundation (JDRF) Continuous Glucose Monitoring Study Group, 2008).

The same JDRF study group also evaluated factors associated with successful use of CGM among participants with intensively treated type 1 diabetes. 232 participants randomly assigned to the CGM group (165 with baseline A1C >or=7.0% and 67 with A1C <7.0%) were asked to use CGM on a daily basis. The associations of baseline factors and early CGM use with CGM use >or=6 days/week in the 6th month and with change in A1C from baseline to 6 months were evaluated. The only baseline factors found to be associated with greater CGM use in month 6 were age >or=25 years (P < 0.001) and more frequent self-reported prestudy blood glucose meter measurements per day (P < 0.001). CGM use and the percentage of CGM glucose values between 71 and 180 mg/dl during the 1st month were predictive of CGM use in month 6 (P < 0.001 and P = 0.002, respectively). More frequent CGM use was associated with a greater reduction in A1C from baseline to 6 months (P < 0.001), a finding present in all age-groups. After 6 months, near-daily CGM use is more frequent in intensively treated adults with type 1 diabetes than in children and adolescents, although in all age-groups near-daily CGM use is associated with a similar reduction in A1C. Frequency of blood glucose meter monitoring and initial CGM use may help predict the likelihood of long-term CGM benefit in intensively treated patients with type 1 diabetes of all ages (JDRF, 2009a).

In a parallel study of 129 adults and children with intensively treated type 1 diabetes (age range 8-69 years), the JDRF study group reported that the evidence suggests that CGM is beneficial for individuals with type 1 diabetes who have already achieved excellent control with A1C <7.0% (JDRF, 2009b).

In a 6-month extension to the JDRF trial, the study group evaluated the long-term effects of CGM in 83 intensively treated adults (≥ 25 years of age) with type 1 diabetes. The group found that most adults continued to use CGM on a daily or near daily basis and had sustained benefits for improved glucose control noted by A1c levels and the amount of time sensor glucose values were in the target range. These benefits persisted despite less intensive follow-up, designed to approximate usual clinical practice, than during the 6-month randomized phase of the study (JDRF, 2009c).

Chase et al. (2010) reported on the 12-month follow-up of 80 patients age 8–17 years who participated in the 6-month randomized JDRF study and the subsequent 6-month extension study. Outcomes included frequency of CGM use, HbA1c levels, rate of severe hypoglycemia and a CGM satisfaction scale. Seventy-six (95%) of 80 subjects were using CGM after 6 months (median use = 5.5 days/week) compared with 67 (84%) after 12 months (median use = 4.0 days/week). The 17 subjects using CGM >or=6 days/week in month 12 had substantially greater improvement from baseline in HbA1c than did the 63 subjects using CGM <6 days/week in month 12 (mean change - 0.8 +/- 0.6% vs. +0.1 +/- 0.7%). They also reported greater satisfaction with use of CGM. The incidence of severe hypoglycemic events was low during the 12 months of the study irrespective of the amount of CGM use. The study concluded that individuals who use CGM on a near-daily basis can have substantial improvement in glycemic control.
Chetty et al. (2008) performed a meta-analysis of RCTs comparing CGM and SBGM in Type 1 diabetic patients. Seven studies with a total of 335 patients were included. Five studies were confined to the pediatric population (age<18 years). The authors concluded that while there was some indication of improved detection of asymptomatic nocturnal hypoglycemia in the CGM group, there was insufficient evidence to support the notion that CGM provides a superior benefit over SBGM in terms of HbA1c reduction.

The Diabetes Research in Children Network (DirecNet) Study Group examined the feasibility of daily use of a CGM, the FreeStyle Navigator CGMS in children with type 1 diabetes using insulin pumps. Mean A1C improved from 7.1% at baseline to 6.8% at 13 weeks of unblinded sensor use, and the percentage of glucose values in the target range increased from 52% to 60%. There was a modest increase in the percentage of sensor values that were <70 mg/dL. (Buckingham 2007) The DirecNet Study Group also conducted a similar study in 27 children with type 1 diabetes using MDIs of insulin. Mean A1C level fell from 7.9 at baseline to 7.3 at 13 weeks (Weinzimer et al., 2008).

Type 2 Diabetes

A separate cohort of 158 patients in the DIAMOND trial was used to evaluate the effectiveness of CGM in adults with type 2 diabetes who were using MDIs and had HbA1c levels of 7.5% to 9.9%. Individuals were randomly assigned to CGM (n=79) or standard care (n=79). In the short 6-month follow-up period, mean HbA1c levels decreased to 7.7% in the CGM group and 8.0% in the control group at 24 weeks. The groups did not differ meaningfully in CGM-measured hypoglycemia or quality-of-life outcomes. Studies with longer follow-up periods are needed to confirm these results (Beck et al., 2017b).

In a subset of the DIAMOND trial, Ruedy et al. (2017) randomly assigned 116 adults ≥ 60 years of age with type 1 (n=34) or type 2 (n=82) diabetes using MDI to either CGM (n=63) or continued management with SMBG (n=53). CGM use was high and associated with improved HbA1c and reduced glycemic variability.

Vigersky et al. (2012) conducted a RCT of 100 adults with type 2 diabetes, who were not on prandial insulin, to determine whether short-time, rt-CGM had long-term glycemic effects. Intermittent RT-CGM over 12 weeks significantly improved glycemic control both during and for up to 1 year following the intervention. The authors concluded that additional studies are needed to confirm these results as well as determine the mechanism by which the improvement occurred, the minimum time for RT-CGM to be effective and the effect/timing of refresher courses of this intervention.

Gestational Diabetes

Lane et al. (2019) evaluated whether rt-CGM improves glycemic control over intermittent SMBG in gestational diabetes. Patients with gestational diabetes were randomized to use either real-time (n=11) or blinded (n=12) CGM. The primary outcome was mean glucose values after four weeks. Secondary outcomes included glycemic control and a composite of obstetric and neonatal outcomes. The use of rt-CGM did not significantly decrease mean glucose values compared with intermittent SMBG after 4 weeks of CGM use. There were also no significant differences in the time spent in glycemic target, maternal or neonatal outcomes.

Voormolen et al. (2018) investigated the effectiveness of retrospective CGM use in pregnant women with type 1 or type 2 diabetes who were undergoing insulin therapy at gestational age < 16 weeks, or women who were undergoing insulin treatment for gestational diabetes at gestational age < 30 weeks. The study randomized 300 pregnant women with type 1 (n=109), type 2 (n=82) or with gestational (n=109) diabetes to either CGM (n=147) or standard treatment (n=153). Glycemic control was assessed by CGM for 5-7 days every 6 weeks in the CGM group, while SMBG and A1c measurements were applied in both groups. Primary outcome was macrosomia, defined as birth weight above the 90th percentile. Secondary outcomes were glycemic control and maternal and neonatal complications. The incidence of macrosomia was 31.0% in the CGM group and 28.4% in the standard treatment group. A1c levels were similar between treatment groups.

In a Cochrane review, Raman et al. (2017) compared the effects of different methods and settings for glucose monitoring for women with gestational diabetes on maternal and fetal, neonatal and child and adult outcomes. Evidence from 11 RCTs (n=1272) suggested no clear differences for the primary outcomes or many secondary outcomes assessed in the review. However, current evidence is limited by the small number of RCTs for the comparisons assessed, small sample sizes and the variable methodological quality of the RCTs.

Implantable Glucose Sensor

A Hayes report evaluated the Eversense CGM in adults with type 1 or type 2 diabetes. The report concluded that a very-low-quality body of evidence suggests that the Eversense CGM is highly correlated with and moderately accurate in the measurement of glucose levels compared with venous blood glucose or SMBG as reference standards. However, substantial uncertainty remains pertaining to the accuracy of the device across a range of glucose values. In addition, the body of evidence is limited by an evidence base of fair- to poor-quality studies, small number of patients,
inconsistencies and variability in the clinical validity outcomes and insufficient evidence to evaluate the clinical utility of the Eversense CGM. Long-term use of Eversense sensors has not been evaluated (Hayes, 2018b).

In a prospective, single-center, single-arm study, Aronson et al. (2019) evaluated the safety and effectiveness of the Eversense XL implantable CGM system through 180 days in a primarily adolescent population with type 1 diabetes (n=36). Overall MARD was 9.4%. CGM system agreement through 60, 120 and 180 days was 82.9%, 83.6% and 83.4%, respectively. Surveillance error grid analysis showed 98.4% of paired values in clinically acceptable error zones A and B. No insertion/removal or device-related serious adverse events were reported. [Study limitations include lack of randomization and control, small patient population and short-term follow-up.]

PRECISION Study

In the prospective, multicenter PRECISION study, Christiansen et al. (2017) further evaluated the accuracy and safety of Eversense among adults with type 1 or type 2 diabetes (n=35) through 90 days. An updated algorithm was also applied to sensor data from the PRECISE II study to evaluate consistency of accuracy results. The system was shown to be accurate overall with a MARD of 9.6%. Eighty-five percent of CGM values were within 15/15% of reference. All sensors were functional through day 90. No device- or procedure-related serious adverse events (SAEs) occurred. This study corroborated the favorable accuracy and safety profile observed in PRECISE II. The updated algorithm improved accuracy of measurements in PRECISE II. Study limitations include lack of randomization and control, small patient population and short-term follow-up.

PRECISE II Study

In the PRECISE trial, Kropff et al. (2017) evaluated the accuracy and longevity of the Eversense (Senseonics, Inc.) implantable CGM sensor. Seventy-one participants, aged 18 years and older with type 1 and type 2 diabetes, participated in the 180-day prospective, multicenter pivotal trial. CGM accuracy was assessed during eight in-clinic visits with the MARD for venous reference glucose values >4.2 mmol/L as the primary end point. Secondary end points included Clarke Error Grid Analysis and alarm performance. The primary safety outcome was device-related serious adverse events. The MARD value against reference glucose values >4.2 mmol/L was 11.1%. Clarke Error Grid Analysis showed 99.2% of samples in the clinically acceptable error zones. Eighty-one percent of hypoglycemic events were detected by the CGM system within 30 min. A limited but statistically significant reduction of CGM measurement accuracy occurred in the last month of use, possibly due to long-term degradation of the glucose indicating gel before end of sensor life was reached. No device-related serious adverse events occurred during the study. This study is limited by a lack of randomization and control, small patient population and short-term follow-up. Further studies are needed to assess the safety and efficacy of these devices.

PRECISE Study

In the PRECISE trial, Kropff et al. (2017) evaluated the accuracy and longevity of the Eversense (Senseonics, Inc.) implantable CGM sensor. Seventy-one participants, aged 18 years and older with type 1 and type 2 diabetes, participated in the 180-day prospective, multicenter pivotal trial. CGM accuracy was assessed during eight in-clinic visits with the MARD for venous reference glucose values >4.2 mmol/L as the primary end point. Secondary end points included Clarke Error Grid Analysis and alarm performance. The primary safety outcome was device-related serious adverse events. The MARD value against reference glucose values >4.2 mmol/L was 11.1%. Clarke Error Grid Analysis showed 99.2% of samples in the clinically acceptable error zones. Eighty-one percent of hypoglycemic events were detected by the CGM system within 30 min. A limited but statistically significant reduction of CGM measurement accuracy occurred in the last month of use, possibly due to long-term degradation of the glucose indicating gel before end of sensor life was reached. No device-related serious adverse events occurred during the study. This study is limited by a lack of randomization and control, small patient population and short-term follow-up. Further studies are needed to assess the safety and efficacy of these devices.

Dehennis et al. (2015) performed a multisite study to assess the accuracy of glucose measurement by the Senseonics CGM system using matched paired measurements to those obtained by laboratory reference analyzer values from venous blood samples. The Senseonics CGM, composed of an implantable sensor, external smart transmitter, and smartphone app, uses a single sensor for continuous display of accurate glucose values for 3 months. Adults ≥18 and ≤65 years of age who had a clinically confirmed diagnosis of type 1 diabetes mellitus or type 2 diabetes and who were receiving insulin injection therapy were eligible to participate in this study. Ten men and 14 women with type 1 diabetes mellitus underwent subcutaneous implantation of sensors in the upper arm. Eight-hour clinic sessions were performed every 14 days (days 1, 15, 30, 45, 60, 75, and 90), during which sensor glucose values were compared against venous blood lab reference measurements using MARDs. The subjects maintained calibration of their CGM system twice daily by entering their SMBG measurement through the smartphone app. Twenty two of the twenty four (92%) sensors reported glucose continuously for 90 days, and the MARD for all 24 sensors was 11.4 ± 2.7% against venous reference glucose values. There was no significant difference in MARD throughout the 90-day study and no serious adverse events were noted. The authors concluded that the study showed successful in-clinic and home use of the Senseonics CGM system over 90 days in subjects with diabetes mellitus. Limitations of this study include non-randomization and small sample size.
Professional Societies

American Diabetes Association (ADA)

Insulin Delivery

The 2019 Standards of Medical Care in Diabetes state that most adults, children and adolescents with type 1 diabetes should be treated with MDI of prandial and basal insulin or CSII. Although most studies of comparing MDI with CSII have been relatively small and of short duration, a systematic review and meta-analysis concluded that pump therapy has modest advantages for lowering A1c and for reducing severe hypoglycemia rates in children and adults. There is no consensus to guide choosing which form of insulin administration is best for a given patient, and research to guide this decision making is needed.

Continuous Glucose Monitoring (CGM)

The 2019 Standards of Medical Care in Diabetes make the following recommendations:

- When used properly, CGM in conjunction with intensive insulin regimens is a useful tool to lower A1c in adults with type 1 diabetes who are not meeting glycemic targets.
- CGM may be a useful tool in individuals with hypoglycemia unawareness and/or frequent hypoglycemic episodes.
- CGM may be used effectively to improve A1C levels and neonatal outcomes in pregnant women with type 1 diabetes.
- CGM should be considered in children and adolescents with type 1 diabetes, whether using MDI or CSII, as an additional tool to help improve glucose control and reduce the risk of hypoglycemia. Benefits of CGM correlate with adherence to ongoing use of the device.
- Sensor-augmented pump therapy may be considered for children, adolescents, and adults to improve glycemic control without an increase in hypoglycemia or severe hypoglycemia. Benefits correlate with adherence to ongoing use of the device.
- Sensor-augmented pump therapy with automatic low-glucose suspend may be considered for adults with type 1 diabetes at high risk of hypoglycemia to prevent episodes of hypoglycemia and reduce their severity.
- Intermittently scanned CGM use may be considered as a substitute for SMBG in adults with diabetes requiring frequent glucose testing.
- CGM should be used as close to daily as possible for maximal benefit.
- When prescribing CGM, robust diabetes education, training and support are required for optimal CGM implementation and ongoing use.

American Association of Clinical Endocrinologists (AACE)/American College of Endocrinology (ACE)

Insulin Pumps

AACE/ACE clinical practice guidelines state that candidates for CSII include patients with type 1 diabetes and patients with type 2 diabetes who are insulin dependent. CSII should only be used in patients who are motivated and knowledgeable in diabetes self-care, including insulin adjustment. To ensure patient safety, prescribing physicians must have expertise in CSII therapy, and CSII users must be thoroughly educated and periodically reevaluated. Sensor-augmented CSII, including those with a threshold-suspend function, should be considered for patients who are at risk of hypoglycemia (Handelsman et al., 2015).

Continuous Glucose Monitoring (CGM)

AACE/ACE clinical practice guidelines state that CGM may be considered for patients with type 1 diabetes and type 2 diabetes on basal-bolus therapy to improve A1c levels and reduce hypoglycemia. Although data from small-scale randomized trials and retrospective or prospective observational studies suggest CGM may provide benefits in insulin-using patients with type 2 diabetes, additional research is needed before recommendations can be made regarding use in this patient population (Handelsman et al., 2015).

Endocrine Society

An Endocrine Society clinical practice guideline on the treatment of diabetes in older adults recommends that patients aged 65 and older, who are treated with insulin, perform frequent fingerstick glucose monitoring and/or CGM (to assess glycemia) in addition to A1c (LeRoith et al., 2019).

Endocrine Society clinical practice guidelines address the use of CGM and CSII in adults with diabetes (Peters et al., 2016).

Insulin Delivery

- Recommend CSII over analog-based basal-bolus MDI in patients with type 1 diabetes who have not achieved their A1C goal, as long as the patient and caregivers are willing and able to use the device. Strong recommendation based on moderate quality evidence.
- Recommend CSII over analog-based basal-bolus MDI in patients with type 1 diabetes who have achieved their A1C goal but continue to experience severe hypoglycemia or high glucose variability, as long as the patient and caregivers are willing and able to use the device. Strong recommendation based on low quality evidence.
- Suggest CSII in patients with type 1 diabetes who require increased insulin delivery flexibility or improved satisfaction and are capable of using the device. Weak recommendation based on low quality evidence.
- Suggest CSII with good adherence to monitoring and dosing in patients with type 2 diabetes who have poor glycemic control despite intensive insulin therapy, oral agents, other injectable therapy and lifestyle modifications. Weak recommendation based on low quality evidence.

Continuous Glucose Monitoring (CGM)
- Recommend rt CGM devices for adult patients with type 1 diabetes who have A1C levels above target and who are willing and able to use these devices on a nearly daily basis. Strong recommendation based on high quality evidence.
- Recommend rt CGM devices for adult patients with well-controlled type 1 diabetes who are willing and able to use these devices on a nearly daily basis. Strong recommendation based on high quality evidence.
- Suggest short-term, intermittent rt CGM use in adult patients with type2 diabetes (not on prandial insulin) who have A1C levels ≥7% and are willing and able to use the device. Weak recommendation based on low quality evidence.
- Suggest that adults with type 1 and type 2 diabetes who use CSII and CGM receive education, training and ongoing support to help achieve and maintain individualized glycemic goals. (Ungraded Good Practice Statement)

U.S. FOOD AND DRUG ADMINISTRATION (FDA)

This section is to be used for informational purposes only. FDA approval alone is not a basis for coverage.

Insulin Delivery
For information on external insulin pumps, see the following website (use product code LZG): http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfPMN/pmn.cfm. (Accessed August 2, 2019)

For information on hybrid closed-loop insulin pumps (e.g., Minimed 670G), see the following website (use product code OZP): https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfPMA/pma.cfm. (Accessed August 2, 2019)

No implantable insulin pumps have received FDA approval at this time.

The i-Port® Injection Port was approved by the FDA on September 9, 2005 (K052389). The injection port is indicated for use by people requiring multiple daily subcutaneous injections of physician prescribed medications, including insulin. The device is designed for use on adults and children for up to 72 hours. Additional information available at: http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfPMN/pmn.cfm?ID=K052389. (Accessed August 2, 2019)

The i-Port Advance® Injection Port was approved by the FDA on February 16, 2012 (K120337). This model has the same indications as the original device but includes an automatic insertion component. Additional information available at: http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?ID=K120337. (Accessed August 2, 2019)

The V-Go device received FDA approval (K100504) on December 1, 2010. V-Go is a mechanical (no electronics), self-contained, sterile, patient fillable, single-use disposable insulin infusion device with an integrated stainless steel subcutaneous needle. The device is indicated for continuous subcutaneous infusion of insulin in one 24-hour time period and on-demand bolus dosing in 2-unit increments (up to 36 units per one 24-hour time period) in adult patients requiring insulin. The device is intended for use in patients with type 2 diabetes. Additional information available at: http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?ID=K100504. (Accessed August 2, 2019)

Insulin pump models (this is not an exhaustive list):
- Insulet OmniPod
- Insulet OmniPod DASH
- Medtronic MiniMed 530G
- Medtronic MiniMed 630G
- Medtronic MiniMed 670G
- Medtronic MiniMed Paradigm Revel
- Sooil Dana Diabecare IIS

Proprietary Information of UnitedHealthcare. Copyright 2020 United HealthCare Services, Inc.
• Tandem T:slim X2

Continuous Glucose Monitors (CGM)

For information on CGMs, see the following websites:

(Checked August 2, 2019)

CGM models (this is not an exhaustive list):

- Abbott FreeStyle Libre Flash
- Dexcom G5
- Dexcom G6
- Medtronic MiniMed 530G
- Medtronic MiniMed 630G
- Medtronic MiniMed 670G
- Medtronic Guardian Connect
- Medtronic MiniMed Paradigm Revel
- Sensionics Eversense
- Tandem T:slim X2

The Eversense CGM system received FDA premarket approval (P160048) on June 21, 2018. The device is classified as an implanted CGM for adjunctive use, under product code QCD. The device is indicated for continually measuring glucose levels in adults (18 years or older) with diabetes for up to 90 days. Additional information is available at: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpma/pma.cfm?id=P160048. (Accessed August 2, 2019)

CENTERS FOR MEDICARE AND MEDICAID SERVICES (CMS)

Insulin Delivery

Medicare may cover external insulin pumps that deliver insulin by continuous subcutaneous infusion when criteria are met. See the National Coverage Determination (NCD) for Infusion Pumps (280.14). Local Coverage Determinations (LCDs) exist; refer to the LCDs for External Infusion Pumps.

Continuous Glucose Monitoring (CGM)

Medicare does not have an NCD specifically for continuous glucose monitoring systems. However, LCDs that address therapeutic continuous glucose monitoring systems exist. See the LCDs for Glucose Monitors.

(Accessed August 2, 2019)

REFERENCES

Hayes, Inc. Health Technology Brief. V-Go disposable insulin delivery device for the management of type 1 or type 2 diabetes mellitus. Lansdale, PA: Hayes, Inc; October 2018a.

POLICY HISTORY/REVISION INFORMATION

<table>
<thead>
<tr>
<th>Date</th>
<th>Application</th>
<th>Coverage Rationale</th>
<th>Supporting Information</th>
</tr>
</thead>
</table>
| 04/01/2020 | Added language to indicate this policy does not apply to the states of Nebraska and New Jersey:
 - For the state of Nebraska, refer to the Medical Policy titled Continuous Glucose Monitoring and Insulin Delivery for Managing Diabetes (for Nebraska Only)
 - For the state of New Jersey, refer to the Medical Policy titled Continuous Glucose Monitoring and Insulin Delivery for Managing Diabetes (for New Jersey Only) | Replaced reference to "MCG™ Care Guidelines, 23rd edition, 2019" with "MCG™ Care Guidelines, [24th edition, 2020]"; refer to the 24th edition for complete details on applicable updates to the MCG™ Care Guidelines | Archived previous policy version CS024.P |
INSTRUCTIONS FOR USE

This Medical Policy provides assistance in interpreting UnitedHealthcare standard benefit plans. When deciding coverage, the federal, state or contractual requirements for benefit plan coverage must be referenced as the terms of the federal, state or contractual requirements for benefit plan coverage may differ from the standard benefit plan. In the event of a conflict, the federal, state or contractual requirements for benefit plan coverage govern. Before using this policy, please check the federal, state or contractual requirements for benefit plan coverage. UnitedHealthcare reserves the right to modify its Policies and Guidelines as necessary. This Medical Policy is provided for informational purposes. It does not constitute medical advice.

UnitedHealthcare may also use tools developed by third parties, such as the MCG™ Care Guidelines, to assist us in administering health benefits. The UnitedHealthcare Medical Policies are intended to be used in connection with the independent professional medical judgment of a qualified health care provider and do not constitute the practice of medicine or medical advice.