Intrauterine Fetal Surgery

Policy Number: MATERNITY 024.19 T2
Effective Date: September 1, 2020

Coverage Rationale

Intrauterine fetal surgery (IUFS) is proven and medically necessary for treating the following conditions:
- Congenital cystic adenomatoid malformation (CCAM) and extralobar pulmonary sequestration (EPS): Fetal lobectomy or thoracoamniotic shunt placement for CCAM and thoracoamniotic shunt placement for EPS
- Pleural Effusion: thoracoamniotic shunt placement
- Sacrococcygeal teratoma (SCT): SCT resection
- Urinary tract obstruction (UTO): urinary decompression via vesicoamniotic shunt placement
- Twin-twin transfusion syndrome (TTTS): fetoscopic laser surgery
- Twin reversed arterial perfusion (TRAP): ablation or occlusion of anastomotic vessels (e.g., laser coagulation or radiofrequency ablation)
- Myelomeningocele (MMC) repair

Due to insufficient evidence of efficacy, IUFS is unproven and not medically necessary for treating all other conditions, including but not limited to:
- Congenital diaphragmatic hernia (CDH)
- Congenital heart disease (CHD)

Prior Authorization Requirements

Prior authorization is required in all sites of service.

Notes:
- Participating providers in the office setting: Prior authorization is required for services performed in the office of a participating provider.
Non-participating/out-of-network providers in the office setting: Prior authorization is not required but is encouraged for out-of-network services. If prior authorization is not obtained, Oxford will review for out-of-network benefits and medical necessity after the service is rendered.

Applicable Codes

The following list(s) of procedure and/or diagnosis codes is provided for reference purposes only and may not be all inclusive. Listing of a code in this policy does not imply that the service described by the code is a covered or non-covered health service. Benefit coverage for health services is determined by the member specific benefit plan document and applicable laws that may require coverage for a specific service. The inclusion of a code does not imply any right to reimbursement or guarantee claim payment. Other Policies may apply.

<table>
<thead>
<tr>
<th>CPT Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>59072</td>
<td>Fetal umbilical cord occlusion, including ultrasound guidance</td>
</tr>
<tr>
<td>59074</td>
<td>Fetal fluid drainage (e.g., vesicocentesis, thoracocentesis, paracentesis), including ultrasound guidance</td>
</tr>
<tr>
<td>59076</td>
<td>Fetal shunt placement, including ultrasound guidance</td>
</tr>
<tr>
<td>59897</td>
<td>Unlisted fetal invasive procedure, including ultrasound guidance, when performed</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HCPCS Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>S2400</td>
<td>Repair, congenital diaphragmatic hernia in the fetus using temporary tracheal occlusion, procedure performed in utero</td>
</tr>
<tr>
<td>S2401</td>
<td>Repair, urinary tract obstruction in the fetus, procedure performed in utero</td>
</tr>
<tr>
<td>S2402</td>
<td>Repair, congenital cystic adenomatoid malformation in the fetus, procedure performed in utero</td>
</tr>
<tr>
<td>S2403</td>
<td>Repair, extralobar pulmonary sequestration in the fetus, procedure performed in utero</td>
</tr>
<tr>
<td>S2404</td>
<td>Repair, myelomeningocele in the fetus, procedure performed in utero</td>
</tr>
<tr>
<td>S2405</td>
<td>Repair of sacrococcygeal teratoma in the fetus, procedure performed in utero</td>
</tr>
<tr>
<td>S2409</td>
<td>Repair, congenital malformation of fetus, procedure performed in utero, not otherwise classified</td>
</tr>
<tr>
<td>S2411</td>
<td>Fetoscopic laser therapy for treatment of twin-to-twin transfusion syndrome</td>
</tr>
</tbody>
</table>

Description of Services

This policy addresses the use of intrauterine fetal surgery (IUFS), an open surgical treatment of fetuses with specific life-threatening conditions that involve a fetal malformation. During IUFS, a hysterotomy is performed, and the fetus is partially removed to correct a fetal malformation.

IUFS uses minimally invasive techniques (i.e., small incisions) and instruments to correct the fetal malformation. The primary medical conditions indicated for IUFS include the following:

- Congenital cystic adenomatoid malformation
- Extralobar pulmonary sequestration
- Sacrococcygeal teratoma
- Urinary tract obstruction
- Twin-twin transfusion syndrome
- Twin reversed arterial perfusion syndrome
- Myelomeningocele repair
- Congenital diaphragmatic hernia
- Congenital heart disease
Congenital cystic adenomatoid malformation (CCAM) and bronchopulmonary sequestration (BPS)

Congenital cystic adenomatoid malformation (CCAM), also known as congenital pulmonary airway malformation, and bronchopulmonary sequestration (BPS) are rare congenital cystic lesions of the lung in fetuses. CCAMs derive their blood supply through the pulmonary circulation, while BPS does not have a connection to the tracheobronchial tree and receives arterial flow directly from the aorta. Depending on the size of the lesion, other possible findings include polyhydramnios, mediastinal shift, pleural effusions, and hydrops. Large lesions may compress residual tissue, thus increasing the risk of pulmonary hypoplasia. The fetal intervention for these lesions is to permanently reduce the space-occupying effect of the lesion and includes fetal lobectomy or thoracoamniotic shunt placement for CCAM and thoracoamniotic shunt placement for EPS. (Sfakianaki and Copel 2012, Witlox et al., 2019)

Congenital Diaphragmatic Hernia (CDH)

CDH results from abnormal development of the diaphragm, which allows abdominal organs like the bowel, stomach, and liver to protrude into the chest cavity. Fetuses diagnosed in utero as a result of maternal symptoms have a high mortality risk. Less invasive fetal procedures are being developed that focus on methods to accomplish tracheal occlusion. (Walsh et al., 2011)

Congenital Heart Disease

In utero procedures are performed for cardiac conditions such as pulmonary atresia with intact ventricular septum, critical aortic stenosis with impending hypoplastic left heart syndrome, and hypoplastic left heart syndrome with intact atrial septum. All of these conditions, if untreated either in utero or soon after birth, are fatal. (Walsh et al., 2011)

Myelomeningocele (MMC)

MMC (also known as spinal bifida) is a neural tube defect in which the spinal cord forms but remains open. Although MMC is rarely fatal, individuals affected with it have a range of disabilities, including paraplegia, hydrocephalus, skeletal deformities, bowel and bladder incontinence and cognitive impairment. Standard therapy is postnatal surgical closure of the MMC followed by shunting for hydrocephalus if needed. (Walsh et al., 2011)

Pleural Effusion

Fetal pleural effusion is a rare condition characterized by an accumulation of fluid in the fetal thorax. Pleural effusions are either primary or secondary, depending on the underlying etiology. When fetal pleural effusions are large or bilateral, they can compromise lung development, leading to pulmonary hypoplasia. Polyhydramnios and secondary fetal hydrops may occur and results in a poor prognosis. Thoracoamniotic shunting is used to drain the pleural effusion into the amniotic cavity and prevent or reverse hydrops. (Chon et al. 2019, Jeong et al 2015)

Sacrococcygeal Teratoma (SCT)

Fetuses with large, vascular SCTs have a high incidence of prenatal mortality from high-output cardiac failure or spontaneous hemorrhage of the growing tumor. Fetal surgical procedures for SCT have focused on the small subgroup of fetuses with SCT and hydrops because untreated cases are expected to die in utero or at birth. In severe cases, SCT with hydrops is associated with a maternal risk of developing mirror syndrome, a severe form of preeclampsia. (Walsh et al., 2011)

Thoracic Lesions

Congenital cystic adenomatoid malformation (CCAM) and bronchopulmonary sequestration are congenital anomalies of the lung. Appropriate candidates for in utero treatment include a small subset of fetuses with congenital pulmonary airway malformations. In this subset, the fetal mediastinum is compressed, leading to impaired venous return with resulting fetal hydrops, secondary to cardiac failure. (Walsh et al., 2011)

Twin Reversed Arterial Perfusion (TRAP)

TRAP sequence is a condition in which an acardiac/acephalic twin receives all of its blood supply from a normal twin, the so-called "pump" twin. Blood enters the acardiac twin through a retrograde flow via the umbilical artery and exits via the umbilical vein. The extra work places an increased demand on the heart of the pump twin, resulting in cardiac failure. Twin death occurs more frequently when the size of the acardiac twin is greater than half that of the pump twin. The goal of fetal surgery is to interrupt blood supply to the non-viable twin.
Twin-Twin Transfusion Syndrome (TTTS)

In TTTS, twins share a single chorionic membrane and a single placenta but have separate amniotic sacs. Women with severe TTTS who have not undergone treatment before 26 weeks will usually experience loss of both fetuses. However, if both twins survive, they often experience severe neurologic compromise and organ failure. Treatment options include amnioreduction to relieve pressure and uterine size, termination of the sicker twin, or fetoscopic laser ablation of the communicating vessels. In nonselective ablation, all vessels crossing the dividing membrane are ablated, whereas selective ablation is limited to certain vessels connecting the two fetuses. (Walsh et al., 2011)

Urinary Tract Obstruction (UTO)

Fetal UTO interferes with normal development of the kidneys and lungs, particularly when involving the lower urinary tract. Goals of fetal surgery have emphasized decompression procedures, such as percutaneous shunting, rather than repair of the specific lesion. The goal of decompression of the distended portion of the urinary tract is to protect function of the remaining kidney and to promote lung development. (Walsh et al., 2011)

Benefit Considerations

When deciding coverage for intrauterine fetal surgery, refer to the member specific benefit plan document for further information on benefit coverage for treatment of life-threatening conditions. In some benefit plan documents, coverage exists for unproven services for persons with life-threatening conditions, under certain circumstances.

Clinical Evidence

Congenital Cystic Adenomatoid Malformation (CCAM) and Extralobar Pulmonary Sequestration (EPS)

A 2017 ECRI Health Technology report reviewed full text of 2 studies (available by subscription only) and abstracts of 7 studies published between January 1, 2012 and August 4, 2017. The evidence indicated that thoracoamniotic shunting results in better survival rates in fetuses without hydrops than those with hydrops. Survival benefit in fetuses with fetal hydrothorax associated with trisomy 21 is unclear because studies report inconsistent findings.

Litwińska et al. conducted a retrospective case series and literature review of 12 fetuses with a large thoracic cyst treated with thoracoamniotic shunting between 2004 and 2014 in a tertiary fetal therapy center. In all cases the thoracic cyst was associated with major mediastinal shift, the CCAM volume ratio (CVR) was >1.6, and in 8 cases there was associated hydrops. Shunt insertion was successfully carried out in all cases at a median gestational age of 24 weeks (range 18-34). In 10 cases there was live birth at a median age of 38 weeks (range 35-41), but in two hydropic fetuses there was intrauterine death. A literature search identified a total of 98 fetuses with CCAM treated with thoracoamniotic shunting between 1987 and 2016. In the combined data from the previous and the current study, the survival rate was 77% for hydropic and 90% for nonhydropic fetuses. The authors concluded that the role of thoracoamniotic shunting in macrocystic lung lesions associated with hydrops is well accepted, and that intrauterine intervention is also likely to be beneficial in the subgroup of nonhydropic fetuses with a CVR >1.6. (2017)

Knox et al. (2006) conducted a systematic review to determine the effect of in-utero pulmonary drainage on perinatal survival in fetuses with primary hydrothoraces and/or congenital cystic lung lesions. A search was conducted in MEDLINE (1966-2004), EMBASE (1988-2004) and the Cochrane Library (2004 issue 2). Selected studies compared the effect of prenatal pulmonary drainage (shunt, surgery or drainage) on perinatal survival to no treatment, in fetuses with ultrasonic evidence of lung pathology. Of a total of 7,958 articles, there were 16 controlled observational studies that included 608 fetuses. Pooled odds ratios (ORs) were used as summary measures of effect and the results were stratified according to predicted fetal prognoses. Pulmonary drainage did not improve perinatal survival in cystic lung lesions compared with no drainage (OR 0.56, 95% CI 0.32-0.97, p=0.04) overall. However, there was an improvement with this therapy in a subgroup of fetuses with fetal hydrops fetalis (OR 19.28, 95% CI 3.67-101.27, p=0.0005) however, this was not observed in the subgroup uncomplicated by fetal hydrops fetalis (OR 0.04, 95% CI 0.01-0.32, p=0.002). The authors concluded that percutaneous, in-utero pulmonary drainage in fetuses with ultrasonic evidence of congenital pulmonary cystic malformations is associated with improved perinatal survival among fetuses with hydrops fetalis.
Pleural Effusion

Chon et al. (2019) conducted a single-center case series analysis to describe postnatal outcomes in survivors after TA shunt placement for congenital pleural effusions. At this center, patients with a dominant unilateral or bilateral pleural effusion complicated by hydrops fetalis were offered TAS placement. The term “dominant” was reserved for fetuses with pleural effusions that were the first to develop or that were relatively more prominent than any remaining fetal effusions, and that were suspected to be the primary underlying cause of the cardiovascular compromise leading to the hydrops. Over a ten-year period, a total of 29 patients with pleural effusion with secondary hydrops underwent TAS placement. The gestational age at the initial TAS placement was 27.6 (20.3-36.9) weeks. Before delivery, hydrops resolved in 17 (58.6%) patients. The delivery gestational age was 35.7 (25.4-41.0) weeks and the overall survival rate was 72.4%. Of the 21 survivors, 19 (90.5%) required admission to the neonatal intensive care unit for 15 (5-64) days. All survivors had postnatal resolution of the pleural effusions. At the time of last reported follow-up, all 21 children were long-term survivors, with a median age of survivorship of 3 years 3 mos. (9 mos.-7 years 6 mos.). The authors concluded TA shunting in fetuses with a dominant pleural effusion(s) and secondary hydrops resulted in a 72% survival rate. Nearly all survivors required admission to the neonatal intensive care unit. However, a majority did not have significant long-term morbidity.

Yinon et al. (2010) conducted a case series analysis to evaluate perinatal outcome of fetuses with primary pleural effusions and/or hydrops. A total of 88 fetuses with large pleural effusions were included. Of those, 50 (76.9%) were hydropic, of which hydrops resolved following shunt placement in 29 fetuses (58.0%). Among the 63 live births, the median gestational age at delivery was 33.6 weeks (range, 26.2-40.0 weeks), with 36 fetuses (57.1%) delivered preterm. The overall survival rate was 75.4% (49/65), and in a subgroup analysis, the survival rate was highest for non-hydropic fetuses (14/15, 93.3%), followed by fetuses whose hydrops resolved (25/29, 86.2%) and remained after shunting (10/21, 47.6%). The authors concluded that TA shunting can be helpful for fetuses with massive pleural effusion. While fetal hydrops can occur in such cases, perinatal outcomes can be improved by successful shunting.

Jeong et al. (2015) conducted a single-center case series analysis to evaluate outcomes of fetal pleural effusion after TA shunting. A total of 68 singleton pregnancies with massive fetal pleural effusion were included. Of those, three were lost to follow-up and two fetuses died in utero. The median gestational age at shunting was 28.3 weeks (range, 18.5-34.1 weeks). Of the 65 fetuses, 50 (76.9%) were hydropic, of which hydrops resolved following shunting in 29 fetuses (58.0%). Among the 63 live births, the median gestational age at delivery was 33.6 weeks (range, 26.2-40.0 weeks), with 36 fetuses (57.1%) delivered preterm. The overall survival rate was 75.4% (49/65), and in a subgroup analysis, the survival rate was highest for non-hydropic fetuses (14/15, 93.3%), followed by fetuses whose hydrops resolved (25/29, 86.2%) and remained after shunting (10/21, 47.6%). The authors concluded that TA shunting can be helpful for fetuses with massive pleural effusion. While fetal hydrops can occur in such cases, perinatal outcomes can be improved by successful shunting.

Professional Societies

Society for Maternal-Fetal Medicine (SMFM)

A SMFM guideline includes fetal needle drainage or thoracoamniotic shunting as a possible treatment for nonimmune hydrops fetalis caused by fetal hydrothorax, chylothorax, large pleural effusion associated with bronchopulmonary sequestration, and fetal congenital pulmonary airway malformation. (2015)
The authors concluded that carefully selected fetuses with primary pleural effusions can benefit from pleuroamniotic shunting, allowing hydrops to resolve with a survival rate of almost 60%.

Sacrococcygeal Teratoma (SCT)
Sananes et al. conducted a retrospective multicenter cohort study in 13 fetuses with high-risk large SCTs between 2004-2010. Additionally, the researchers performed a systematic literature review of all cases that underwent tumor ablation in order to compare the survival rates after 'vascular' and 'interstitial' ablation. Study objectives were to evaluate the efficacy of minimally invasive ablation of high-risk large SCTs and to compare the efficacy of the vascular versus interstitial tumor approach. Five of the 13 underwent tumor ablation. The estimated difference in hydrops resolution rate and survival rate between the fetal intervention and the no fetal intervention groups was 44.6% and 31%, respectively. The 5 cases were then analyzed with 28 cases from the literature. Researchers estimated the difference in survival rate and in hydrops resolution rate between the vascular and interstitial ablation groups was 19.8% and 36.7%, respectively. The authors concluded that minimally invasive surgery seemed to improve perinatal outcome in cases of high-risk large fetal SCT. Their findings also suggested that vascular ablation may improve outcome and may be more effective than interstitial tumor ablation. Further investigation in a larger multicenter prospective study is needed. (2016)

Fetal surgery is not considered appropriate in the presence of the maternal mirror syndrome or in cases of advanced high-output cardiac failure. (Hedrick et al., 2004)

Urinary Tract Obstruction (UTO)
Nassr et al. (2017) conducted an updated systematic review and meta-analysis to evaluate the effect of vesicoamniotic shunt (VAS) as treatment for fetal lower urinary tract obstruction (LUTO). The primary outcomes were perinatal and postnatal survival rates. The secondary outcome was the effect of treatment with a VAS on postnatal renal function compared with conservative prenatal management. A search was conducted using the following databases: Ovid MEDLINE In-Process and Other Non-Indexed Citations, Ovid MEDLINE, Ovid EMBASE, Ovid Cochrane Central Register of Controlled Trials, Ovid Cochrane Database of Systematic Reviews and Scopus. Cohort studies and clinical trials were included. However, case series were also included if the intervention and conservative management could be identified after the exclusion of cases that underwent elective termination of pregnancy (TOP). Single-arm studies and studies that did not report survival were excluded. All included studies were required to clearly define LUTO as the presence of an enlarged fetal bladder and bilateral hydronephrosis. Results from a total of 9 studies (4 retrospective cohort, 1 combined prospective and retrospective cohort, 1 randomized trial, and 2 that did not specify the method of data collection) were pooled for the meta-analysis. The results revealed that 64 of the 112 fetuses in the VAS arm survived compared with 52 of the 134 fetuses in the conservative arm (57.1% vs 38.8%, P<0.01). The pooled estimate of survival was different in the two arms, favoring VAS (OR, 2.54 (95% CI, 1.14–5.67)). There was no difference in 6-month or 12-month survival (OR, 1.77 (95% CI, 0.25–12.71)) or 2-year survival (OR, 1.81 (95% CI, 0.09–38.03)). Furthermore, there was no difference in postnatal renal function between fetuses that underwent VAS and those that did not (OR, 2.09 (95% CI, 0.74–5.94)). The authors concluded that data available for this meta-analysis appears to support an advantage for perinatal survival in fetuses treated with VAS compared with conservative management, and that 1–2-year survival and long-term renal function after a VAS procedure remains uncertain. However, multi-center, randomized controlled trials evaluating VAS treatment with various levels of LUTO severity are also needed.

Twin-Twin Transfusion Syndrome (TTTS)
Ozawa et al. (2017) conducted a prospective case series interventional study to investigate the feasibility and safety of fetoscopic laser photoagulation (FLP) for amniotic fluid discordance (AFD) bordering on TTTS with an absent or reverse end-diastolic velocity in the umbilical artery, as well as evaluating the perinatal and long-term outcomes. Surgical intervention took place on the fetuses of 11 women during weeks 20-25 of gestation. Neurodevelopmental outcome was evaluated at 6 months and at 3 years of age. There were 9 cases of selective intrauterine growth restriction in which the growth discordant rate exceeded 25%. The survival rates of the donor and recipient twins were 27.3% and 100%, respectively. None of the surviving donor twins and two of the 11 recipient twins had hemiplegia at 6 months of age. One additional recipient twin had developmental delay at 3 years of age. Researchers concluded that FLP does not seem to be a promising treatment option for AFD bordering on TTTS. While feasible without complications, donor twin death occurred frequently and there were some cases of neurodevelopmental abnormalities in the surviving recipient twin.

Salomon et al. (2017) conducted a long-term follow-up study of 256 fetuses with TTTS that were enrolled in the Eurofoetus trial. The Eurofoetus trial (Senat, 2004) was a multi-center, randomized clinical trial that compared treatment with fetoscopic
selective laser coagulation (FSLC; n=136) versus serial amniodrainage (AD; n=120). The follow-up study evaluated the neurological and neurodevelopmental outcomes up to age 6. Survivors were evaluated by standardized neurological examination and by Ages and Stages Questionnaires (ASQ). The primary outcome was a composite of death and major neurological impairment. In the FSLC group, 37% (n=50) and 9% (n=13) of fetuses died in utero and in the neonatal period, respectively. In the AD group, there were 39% (n=47) and 22% (n=26) died in utero and in the neonatal period, respectively. A total of 120 children (47%) were alive at the age of 6 months and were followed up to 6 years of age. At the time of diagnosis, only treatment and Quintero stage were predictors of a poor outcome (hazard ratio, 0.61; 95% CI, 0.41–0.90; p<0.01 and hazard ratio, 3.23; 95% CI, 2.19–4.76; p<0.001, respectively). At the end of follow-up, 60 (82%) and 33 (70%) of the children had a normal neurological evaluation in the FSLC and AD treatment groups, respectively (p=0.12). Children treated by FSLC had higher ASQ scores at the end of follow-up (p =0.04). The authors concluded that TTTS treated with FSLC is associated with a lower incidence of fetal death and long-term major neurological impairment than treatment with AD.

Roberts et al. (2014) conducted an updated systematic review to evaluate the impact of treatment modalities in twin-twin transfusion syndrome. A search was performed using the Cochrane Pregnancy and Childbirth Group's Trials Register (May 2013), the Cochrane Central Register of Controlled Trials, MEDLINE, Embase, proceedings of major conferences and weekly current awareness alerts from an additional 40 journals. A total of 3 studies (253 women and 506 babies) were included. Two studies compared amnioreduction with endoscopic laser coagulation (182 women, Senat 2004 [Eurofoetus trial] and Crombleholme 2007 [NIHCD]) and 1 study compared amnioreduction with septostomy (71 women, Moise 2005). When amnioreduction was compared with laser coagulation, although there was no difference in overall death between amnioreduction and laser coagulation (average risk ratio (RR) 0.87; 95% confidence interval (CI) 0.55 to 1.38 adjusted for clustering, two trials) or death of at least one infant per pregnancy (RR 0.91; 95% CI 0.75 to 1.09, two trials), or death of both infants per pregnancy (average RR 0.76; 95% CI 0.27 to 2.10, two trials), more babies were alive without neurological abnormality at the age of six years in the laser group than in the amnioreduction groups (RR 1.57; 95% CI 1.05 to 2.34 adjusted for clustering, one trial). There were no significant differences in the babies alive at six years with major neurological abnormality treated by laser coagulation or amnioreduction (RR 0.97; 95% CI 0.34 to 2.77 adjusted for clustering, one trial). In this updated review, outcomes for death are different from the previous review (Roberts 2008), where improvements in perinatal death and death of both infants per pregnancy were shown in the laser intervention arm. The NIHCD trial included in this update exerts an opposite direction of effects to the Eurofetus study, which was previously the only included laser study, therefore the difference in outcome. When amnioreduction was compared with septostomy, there were no differences in overall death (RR 0.83; 95% CI 0.47 to 1.47, adjusted for clustering, one trial), death of at least one infant per pregnancy (RR 0.80; 95% CI 0.48 to 1.35, one trial), or death of both infants per pregnancy (RR 0.90; 95% CI 0.37 to 2.22, one trial) or gestational age at birth (RR 1.20; 95% CI-0.81 to 3.21, one trial) between amnioreduction and septostomy. The authors concluded that endoscopic laser coagulation of anastomotic vessels should continue to be considered in the treatment of all stages of twin-twin transfusion syndrome to improve neurodevelopmental outcomes, and that further research assessing long-term outcomes of TTTS survivors is still needed.

A systematic review and meta-analysis was conducted by Rossi and D'Addario (2008) to review the controversy on laser therapy (LT) versus serial amnioreduction (SA) performed for TTTS. Inclusion criteria were diamniotic monochorionic pregnancy, TTTS diagnosed with standard parameters, and peri- and neonatal outcomes well defined. Ten articles published between 1997-2007 provided 611 cases of TTTS (LT: 70%; SA: 30%) with 4 studies comparing the 2 treatments (395 cases: LT, 58%; SA, 42%). The meta-analysis showed that LT was associated with better outcomes than SA.

Senat et al. (2004) conducted a RCT, evaluating pregnant women with severe TTTS before 26 weeks of gestation who were randomly assigned to laser therapy (n = 72) or amnioreduction (n = 70). The study concluded early because an interim analysis demonstrated a significant survival benefit in the laser group. Compared to the amnioreduction group, the laser group had a higher likelihood of survival (of at least 1 twin) to 28 days of age (76% in laser group and 56% in amnioreduction group). The laser group also had a lower incidence of cystic periventricular leukomalacia and were more likely to have no neurological complications at 6 months of age (52% in laser group and 31% in amnioreduction group). This study was included in the Roberts (2008) systematic review.

Graef et al. conducted a cas series evaluation of 167 children (median age 3 years, 2 months) to investigate long-term neurodevelopment after intrauterine laser coagulation for TTTS. A total of 145 children (86.8%) demonstrated normal development, 12 children (7.2%) showed minor neurological abnormalities, and 10 children (6%) demonstrated major neurological abnormalities. The investigators concluded that intrauterine laser coagulation was the relatively best treatment option for severe TTTS. (2006)
A National Institute for Health and Care Excellence (NICE) interventional procedures guideline states that current evidence on the safety and efficacy of intrauterine laser ablation of placental vessels for the treatment of TTTS appears adequate to support the use of this procedure provided that the normal arrangements are in place for clinical governance. (2006)

Professional Societies

Society for Maternal-Fetal Medicine (SMFM)

A SMFM clinical guideline states that over 75% of stage I TTTS cases remain stable or regress without invasive intervention, with perinatal survival of about 86%. Therefore, many patients with stage I TTTS can often be managed expectantly. For stages II-IV, fetoscopic laser photoacoagulation of placental anastomoses is considered by most experts to be the best available approach in continuing pregnancies at <26 weeks. However, expectant management and amnioreduction remain 2 options for TTTS > stage I at <26 weeks when the patient does not have the ability to travel to a center that performs fetoscopic laser photoacoagulation. Published meta-analysis data have demonstrated no significant survival benefit, long-term neurologic outcomes in the Eurofetus trial were not different between the laser and non-laser groups. Laser-treated TTTS has been shown to be associated with a perinatal mortality rate of 30-50%, and a 5-20% chance of long-term neurologic handicap. For stage ≥II TTTS and for those undergoing invasive interventions, steroids for fetal maturation should be considered at 24 0/7 to 33 6/7 weeks. (SMFM, 2013)

Twin Reversed Arterial Perfusion (TRAP)

Zhang et al. (2018) conducted a single-center retrospective case series analysis evaluating 25 patients with pregnancies complicated by different stages of TRAP. All patients were diagnosed by ultrasound and categorized into three groups (Ia, IIa and IIb). Patients were expectantly managed or underwent RFA (radiofrequency ablation) according to the degree to which the pump twin was affected and the abdominal circumference ratio between the acardiac and pump twin. For stage Ia cases without obvious blood flow to the acardiac twin, expectant management was preferred. For stage IIa and IIb cases, RFA (radiofrequency ablation) or expectant management was performed according to the condition of the TRAP. The primary outcome was perinatal outcome: live birth, IUFD (intrauterine fetal demise) or labor induction. Secondary outcomes included gestational age at delivery and complications. There were four cases in stage Ia, 19 cases in stage IIa, and two cases in stage IIb. Cases in stage Ia were expectantly managed. Among the stage IIa cases, 10/19 underwent RFA (radiofrequency ablation) and 6/19 received expectant management, with the remaining 3 patients refusing any therapy and excluded from the analysis. Among the stage IIb cases, 1 underwent RFA and 1 was managed expectantly. The total survival rate when the pump twin received treatment was 64% (14/22). For the expectant management group and the RFA group, the survival rates were both 64% (7/11). All pump twins in stage Ia survived and the average gestational age at delivery was 37.9 weeks. In stage IIa cases, the overall survival rate of the pump twin was 70% (7/10) and the average gestational age at delivery was 35.8 weeks in cases treated by RFA. The survival rate was 50% (3/6) and the average gestational age at delivery was 32.8 weeks in expectantly managed cases in stage IIa. No pump twin survived in stage IIa without treatment or in stage IIb. The authors concluded that expectant management is an effective for treatment of TRAP sequence in stage Ia and that in cases with stage IIa TRAP, RFA improves the prognosis of pump twins.

Lee et al. (2013) reported the North American Fetal Therapy Network (NAFTNet) Registry data on the outcomes of using radiofrequency ablation (RFA) to treat TRAP. This was a retrospective review of all patients who underwent percutaneous RFA of an acardiac twin after referral to a NAFTNet institution. The primary outcome was neonatal survival to 30 days of age. Of the 98 patients identified, there were no maternal deaths. Mean gestational age at delivery was 33.4 weeks overall and 36.0 weeks for survivors. Median gestational age at delivery was 37 weeks. Survival of the pump twin to 30 days was 80% in the overall cohort. The authors concluded that this data suggests that RFA of the acardiac twin is an effective treatment for TRAP sequence.

Pagani et al. (2013) conducted a retrospective cohort study and meta-analysis of intrafetal laser treatment for TRAP sequence. A total of 23 cases of TRAP were identified during the study period. Of these, 6 were managed conservatively and 17 were treated with laser therapy. All cases managed conservatively were complicated by intrauterine death (IUD) at a median gestational age of 14 weeks. Among the treated cases, 14 (82%) delivered a healthy twin at a median gestational age of 37 weeks. The overall neonatal survival was 80%. Adverse pregnancy outcome was significantly lower when the treatment was performed before 16 weeks’ gestation.
Cabassa et al. (2013) conducted a case series review to evaluate the treatment of monochorionic twin pregnancies complicated by TRAP using RFA. Between July 2007 and October 2010, 11 monochorionic twin pregnancies complicated by TRAP were identified. A total of 7 patients underwent intrafetal ablation of the acardiac twin with RFA. Median gestational age at the intervention was 17 weeks. A total of 5 fetuses (71%) were delivered at a median gestational age of 33 weeks; all were alive and had a normal examination at 6 months of age. The overall neonatal survival was 85%. The authors noted that further research is needed to define the best timing of the procedure.

Myelomeningocele (MMC)

Relating to MMC, a 2018 Hayes report (consisting of 1 good-quality RCT and supporting evidence from 1 prospective cohort study and several retrospective studies) suggests that prenatal MMC repair significantly decreases the need for shunts and may decrease hindbrain herniation compared with postnatal MMC repair.

Kabagambe et al. (2018) conducted a systematic review and meta-analysis to evaluate obstetrical, neonatal and 12-month neurological outcomes of patients with myelomeningocele (MMC) who underwent fetoscopic vs. open in utero repair. This study focused on medical literature published after the MOMS study (Adzick 2011). Using predetermined terms, a search was conducted in PubMed and Embase. Studies that reported fetal, obstetrical, or postnatal outcomes after in utero repair of MMC and published between January 1, 2011 and August 13, 2016 were eligible. After reviewing the identified articles, 11 retrospective or nonrandomized prospective cohort studies were included in the final analysis. Of the 11 studies, 5 reported outcomes using fetoscopic MMC repair (n=179) and 6 were with open fetal repair (n=257). One study, Belfort (2017), reported fetoscopic MMC repair via maternal laparotomy rather than percutaneous access and since this approach differed, fetoscopic results were reported with and without this study’s results. The meta-analysis revealed no difference in mortality or the rate of shunt placement for hydrocephalus. Percutaneous fetoscopic repair was associated with higher rates of premature rupture of membranes (91 vs. 36%, p<0.01) and preterm birth (96 vs. 81%, p=0.04) compared to open repair however, fetoscopic repair via maternal laparotomy reduced preterm birth. The rate of dehiscence and leakage from the MMC repair site was higher after both types of fetoscopic surgery (30 vs. 7%, p<0.01), while the rate of uterine dehiscence was higher after open repair (11 vs. 0%, p<0.01). The authors concluded that fetoscopic repair is a promising alternative to open fetal MMC repair with a lower risk of uterine dehiscence; however, fetoscopic techniques should be optimized to overcome the high rate of dehiscence and leakage at the MMC repair site, and that a fetoscopic approach via maternal laparotomy reduces the risk of preterm birth.

The Management of Myelomeningocele Study (MOMS) compared outcomes of prenatal versus postnatal repair of MMC. Patients (n = 183) were randomized to undergo either prenatal surgery before 26 weeks of gestation or standard postnatal repair. Primary outcomes were fetal or neonatal death, the need for a cerebrospinal shunt by the age of 12 months and mental development and motor function at 30 months. The children of 158 patients were available for evaluation at 12 months. The children of 134 patients were available for evaluation at 30 months. The trial was stopped after recruiting 183 of the planned 200 patients due to demonstrated efficacy of prenatal versus postnatal repair. Despite having more severe lesions and an increased risk of preterm delivery, the study found that the prenatal surgery group had significantly better outcomes than the postnatal surgery group. Prenatal surgery for MMC decreased the risk of death or need for shunting by the age of 12 months. Prenatal surgery also improved scores on a composite measure of mental and motor function at 30 months. However, prenatal surgery was associated with an increased risk of preterm delivery and uterine dehiscence at delivery. The authors noted that the potential benefits of prenatal surgery must be balanced against the risks of prematurity and maternal morbidity. (Adzick, 2011)

Danzer et al. (2009) evaluated lower extremity neuromotor function (LENF) and short-term ambulatory potential following fetal MMC (fMMC) closure in a retrospective chart review of 54 children. Neonatal LENF was compared to predicted function based on spinal lesion level assigned by prenatal ultrasound. A total of 31 out of 54 of fMMC children (57.4%) had better than predicted, 13/54 (24.1%) same as predicted and 10/54 (18.5%) worse than predicted LENF at birth. At a median follow-up age of 66 months, 37/54 (69%) walk independently, 13/54 (24%) are assisted walkers, and 4/54 (7%) are wheelchair dependent. Despite the observed improved ambulatory status, structured evaluation of coordinative skills revealed that the majority of independent walkers and all children that require assistive devices to walk experience significant deficits in lower extremity coordination. The investigators concluded that fMMC surgery results in better than predicted LENF at birth and short-term ambulatory status. However, fMMC children continue to demonstrate deficits in movement coordination that are characteristic for children with spina bifida.

Danzer et al. (2008) evaluated the incidence and clinical implications of the development of cutaneously derived intradural inclusion cysts following fMMC closure in retrospective databases and responses to a parental questionnaire. The investigators
found that cutaneously derived intradural inclusion cysts can develop following fMMC surgery. Deterioration of bladder function, risk of recurrence, and loss of lower extremity function appear to be the most important long-term complications of inclusion cysts in children with fMMCs.

Koh et al. (2006) compared urodynamic findings in patients who underwent prenatal closure of MMC (n = 5) with those of patients who underwent postnatal closure (n = 88). All 5 prenatally treated patients had lower lumbosacral lesions on neurological examination. In comparison, 34 of the 88 patients in the postnatal cohort (39%) lacked sphincter activity at newborn examination, with similar findings noted at 1-year evaluation. In terms of bladder function, all 5 patients in the prenatal cohort showed detrusor overactivity, compared to 33 of the 88 patients (38%) in the postnatal cohort at the newborn examination, with similar findings at 1-year evaluation. The investigators concluded that fetal closure of MMC is associated with a higher incidence of complete denervation of the external urethral sphincter and detrusor overactivity compared to postnatal closure.

Professional Societies

American College of Obstetricians and Gynecologists (ACOG)

ACOG’s Maternal-Fetal Management Task Force published a position statement (Cohen et al., 2014) regarding fMMC repair with the goal of developing “optimal practice criteria for medical and surgical leadership.” Members of the task force reported the following:

- fMMC repairs should be performed in established fetal therapy centers using a multidisciplinary team approach.
- The fetal surgery team must have experience working together and individual members have a level of expertise in their field.
- The level of fetal surgical technical expertise demanded requires an adequate annual volume of open fetal and EXIT procedures to maintain competency.
- The level of technical expertise in fMMC repair requires an initial experience of at least 5 cases and an ongoing adequate annual volume of cases evaluated for fetal surgery to maintain competency.
- Centers developing new programs must receive guidance and training from established programs and experienced individuals.
- The MOMS protocol should be followed for preoperative, intraoperative, and immediate postoperative care. This applies to inclusion and exclusion criteria for in utero MMC repair.
- Modification of the long-term postoperative and delivery care is acceptable in certain circumstances.
- Modifications to the perioperative protocol are only permissible after the results of fMMC repair performed by an expanded number of centers have been shown to be consistent with the results obtained in the MOMS trial. Such modifications would, ideally, be developed by means of a series of cooperative trials.
- Ongoing neonatal and pediatric care should be performed in multidisciplinary spina bifida clinics. This can be done at outside centers but must be standardized.
- Counseling should be full disclosure and nondirective in nature. It should also include reproductive implications for future pregnancies.
- A reflective period of at least 24 hours is recommended.
- Short-term and long-term outcomes data from all centers should be kept in a national registry with periodic review.
- Centers performing open MMC repair must maintain a collaborative approach to outcomes reporting and future research, including participating in the long-term outcomes data collection and evaluation. Close links between fetal centers throughout the country and community providers are essential.”

An ACOG practice bulletin states that despite the maternal and obstetric risks, in utero repair is an option for women who meet appropriate criteria. Counseling should be nondirective and include all options, with full disclosure of all potential benefits and risks for the fetus and woman, including the implications for future pregnancies. (2017)

An ACOG committee opinion states open maternal–fetal surgery for MMC repair is a major procedure for the woman and her affected fetus. Although there is demonstrated potential for fetal and pediatric benefit, there are significant maternal implications and complications that may occur acutely, postoperatively, for the duration of the pregnancy, and in subsequent pregnancies. It is a highly technical procedure with potential for significant morbidity and possibly mortality, even with the best and most experienced surgeons. Maternal–fetal surgery for MMC repair should only be offered to carefully selected patients at facilities with an appropriate level of personnel and resources. (2019)
Congenital Diaphragmatic Hernia (CDH)

A 2018 Hayes report concludes that fetal endoscopic tracheal occlusion (FETO) for fetuses with mild CDH, cannot be evaluated due to a lack of evidence in the peer reviewed literature. The evidence also suggests that FETO may not benefit fetuses with moderate CDH, although this was only evaluated in a single RCT and thus the evidence is insufficient. In fetuses with severe CDH, there may be clinical benefits over postnatal treatment alone in terms of improved survival and a reduction in severe pulmonary hypertension in infants; however, reviewed evidence is limited to 3 fair-quality RCTs.

A systematic review and meta-analysis by Grivell et al. (2015) compared the effects of prenatal versus postnatal interventions for CDH on perinatal mortality and morbidity, longer-term infant outcomes and maternal morbidity. The review also looked to compare the effects of different prenatal interventions with each other. Three studies were included involving 97 women. Two trials examined in utero FETO with standard (postnatal) care in fetuses with severe diaphragmatic hernia. One trial examined the effect of antenatal corticosteroids versus placebo. The authors concluded that there is currently insufficient evidence to recommend in utero intervention for fetuses with CDH as a part of routine clinical practice. Only 1 of the studies adequately reported on perinatal mortality, but there were no data suitable for inclusion in the analysis. More studies are needed to further examine the effect of both in utero FETO and the use of antenatal corticosteroids on important neonatal outcomes and long-term infant survival and health.

Ruano et al. (2012) conducted a RCT to determine whether FETO improved survival in cases of CDH. Patients whose fetuses had severe isolated CDH (lung-to-head ratio < 1.0, liver herniation into the thoracic cavity and no other detectable anomalies) were randomly assigned to FETO (n = 20) or to standard postnatal management (n = 21). Tracheal balloon placement was achieved with ultrasound guidance and fetoscopy between 26 and 30 weeks of gestation. Postnatal therapy was the same for both treated fetuses and controls. The primary outcome was survival to 6 months of age. Delivery occurred at 35.6 ± 2.4 weeks in the FETO group and at 37.4 ± 1.9 weeks in the control group. In the intention-to-treat analysis, 10/20 (50.0%) infants in the FETO group survived, while 1/21 (4.8%) controls survived. In the received-treatment analysis, 10/19 (52.6%) infants in the FETO group and 1/19 (5.3%) controls survived. The authors concluded that FETO improved infant survival in isolated severe CDH; however, the risk of prematurity and preterm premature rupture of membranes was high.

Ruano et al. (2011) treated 16 fetuses with severe CDH with FETO and compared their outcome to 18 similar cases treated with standard neonatal therapy. The primary outcome was neonatal survival (up to 28 days after birth). Survival in the FETO group was 53% compared to 6% in the standard therapy group. This study is limited by small sample size and lack of randomization.

Kunisaki et al. (2007) conducted a retrospective cohort analysis to evaluate whether the EXIT procedure with extracorporeal membrane oxygenation (EXIT to ECMO) is a reasonable approach for managing patients antenatally diagnosed with severe CDH. Fourteen patients underwent EXIT with a trial of ventilation. Fetuses with poor preductal oxygen saturations despite mechanical ventilation received ECMO before their delivery. Three neonates passed the ventilation trial and survived, but 2 of them required ECMO within 48 hours. The remaining 11 fetuses received ECMO before their delivery. Overall survival after EXIT-to-ECMO was 64%. At 1-year follow-up, all survivors had weaned off supplemental oxygen, but 57% required diuretics and/or bronchodilators. The investigators concluded that the EXIT-to-ECMO procedure is associated with favorable survival rates and acceptable pulmonary morbidity in fetuses expected to have a poor prognosis under conventional management.

A case series reported the results of 24 fetuses with severe CDH who underwent percutaneous FETO with a balloon. Premature prelabor rupture of the membrane occurred in 16.7% and 33.3% at 28 and 32 weeks, respectively. Seven-day, 28-day, and survival at discharge were 75%, 58.3%, and 50%, respectively. The investigators concluded that FETO may improve survival in highly selected CDH cases. (Deprest et al., 2006)

Hirose et al. (2004) conducted a retrospective review of 52 patients who underwent ex utero intrapartum treatment (EXIT) procedure. Fifty-one of 52 patients were born alive. At the time of the study, 27 of 52 patients (52%) were alive. All deaths have been in patients with CDH. The investigators concluded that the EXIT procedures can be performed with minimal maternal morbidity and with good outcomes.

Congenital Heart Disease (CHD)

Kovacevic et al. (2018) conducted a multi-center, retrospective, cohort analysis of fetuses with aortic stenosis that underwent fetal valvuloplasty (FV) compared with fetuses with similar characteristics but did not undergo FV. The primary outcomes were overall survival, biventricular (BV)-circulation survival and survival after birth. Secondary outcomes were hemodynamic change...
and left heart growth. To enable retrospective pseudorandomization, a two-stage propensity score process was undertaken. First, propensity scores were derived from clinically relevant variables and then, propensity score cases were weighted, and matching was restricted to those with a score between 0.14 – 0.9. The propensity score model was created with 54/67 FV and 60/147 natural history (NH) fetuses, and the final analytic cohort was comprised of 42 FV fetuses and 29 NH fetuses. FV was successful in 59/67 fetuses at a median age of 26 (21-34) weeks. There were 7/72 (10%) procedure-related losses, and 22/53 (42%) FV babies were delivered at < 37 weeks. After adjusting for circulation and neonatal surgical center, the inverse probability of treatment weighting demonstrated improved survival of liveborn infants following FV (hazard ratio, 0.38; 95% CI, 0.23-0.64; p=0.0001). Similar proportions had BV circulation (36% for the FV cohort and 38% for the NH cohort) and survival was similar between final circulations. Successful FV cases showed improved hemodynamic response and less deterioration of left heart growth compared with NH cases (p≤0.01). The authors concluded that their results showed improvements in fetal hemodynamics and preservation of left heart growth following successful FV compared with NH. Although the proportion of those achieving a BV circulation outcome was similar in both cohorts, fetuses that survived showed improved survival independent of final circulation up to 10 years of follow-up. However, FV is associated with a 10% procedure-related loss and increased prematurity and therefore, the risk of FV compared to its benefit remains uncertain, and additional trials are still needed.

Araujo Júnior et al. completed a systematic review and meta-analysis to assess perinatal outcomes and intrauterine complications following fetal intervention for CHD. Outcome measures included fetal death, live birth, preterm delivery < 37 weeks' gestation and neonatal death. Intrauterine complications that were assessed included bradycardia requiring treatment and hemopericardium requiring drainage. Out of 2279 records identified in the database search, 29 studies (11 retrospective cohort and 18 case reports) were considered eligible for analysis. Fetal death after treatment of CHD by aortic valvuloplasty was reported in 3 studies, with a rate of 31%; after pulmonary valvuloplasty in 1 study, with a rate of 25%; after septoplasty in 1 study, with a rate of 14%; and after pericardiocentesis and/or pericardioamniotic shunt placement in 24 studies, with a rate of 29%. Bradycardia requiring treatment was reported after aortic valvuloplasty in 2 studies, with a rate of 52%; after pulmonary valvuloplasty in 1 study, with a rate of 44%; and after septoplasty in 1 study, with a rate of 27%. The authors concluded that current evidence on the effectiveness of prenatal intervention for CHD derives mostly from case reports and a few larger series; no study was randomized. Although the results of the meta-analysis are encouraging in terms of perinatal survival, they should be interpreted with caution when comparing with procedures performed after delivery. (2016)

Pedra et al. (2014) reported results of a small case series of fetal cardiac procedures for various cardiac conditions (21 fetuses; 22 procedures). The procedures included atrial septostomy, fetal aortic valvuloplasty (FAV), pulmonary valvuloplasty, or a combination of aortic septostomy and FAV. The fetal clinical conditions consisted of critical aortic stenosis (AS) (n = 13), hypoplastic left heart syndrome (HLHS) and intact interatrial septum or small patent foramen ovale (n = 4), pulmonary atresia with intact ventricular septum (n = 1), and critical pulmonary stenosis (n = 3). A total of 91% of procedures (20 of 22) were considered successful. Two procedures, FAV and pulmonary valvuloplasty, failed. One fetus died and no maternal complications were reported. Long-term morbidity was frequent, and 12 fetal deaths eventually occurred.

A retrospective review was conducted of 100 patients who underwent FAV for severe mid-gestation AS with evolving HLHS from March 2000 to January 2013. The median gestational age at intervention was 23.8 weeks. Patients were categorized based on postnatal management as biventricular (BV) or HLHS. Eighty-eight fetuses were live-born, and 38 had a BV circulation (31 from birth, 7 converted after initial univentricular palliation). Left-sided structures, namely aortic and mitral valve sizes and left ventricular (LV) volume, were significantly larger in the BV group at the time of birth. After a median follow-up of 5.4 years, freedom from cardiac death among all BV patients was 96±4% at 5 years and 84±12% at 10 years, which was better than HLHS patients. There was no cardiac mortality in patients with a BV circulation from birth. All but 1 of the BV patients required postnatal intervention; 42% underwent aortic and/or mitral valve replacement. On most recent echocardiogram, the median LV end-diastolic volume z-score was +1.7 (range: -1.3, +8.2), and 80% had normal ejection fraction. The authors concluded that short- and intermediate-term survival among patients who underwent FAV and achieved a BV circulation postnatally is encouraging. However, morbidity still exists, and on-going assessment is warranted. (Freud et al., 2014)

A total of 70 fetuses underwent attempted FAV for critical AS with evolving HLHS. The procedure was technically successful (increased flow across the valve) in 52 fetuses (74%). Forty-five of these resulted in a viable live birth. Relative to 21 untreated comparison fetuses, subsequent prenatal growth of the aortic and mitral valves, but not the left ventricle, was improved after intervention. Nine pregnancies (13%) did not reach a viable term or preterm birth. Seventeen patients had BV circulation postnatally, 15 from birth. Larger left heart structures and higher left ventricular pressure at the time of intervention were associated with BVOutcome. Technically successful FAV alters left heart valvar growth in fetuses with AS and evolving HLHS...
and, in a subset of cases, appeared to contribute to a BV outcome after birth. The authors note that FAV carries a risk of fetal demise. Further studies from well-designed clinical trials are needed to confirm these results. (McElhinney et al., 2009)

Vida et al. (2007) retrospectively identified 32 neonates with a diagnosis of HLHS and intact or highly restrictive atrial septum who underwent left atrial decompression in utero or postnatally before surgery. Fourteen patients (44%) underwent fetal intervention, either atrial septoplasty (n = 9) or FAV (n = 5). The investigators concluded that prenatal decompression of the left atrium may be associated with greater hospital survival. Proposed effects of fetal intervention on lung pathology and longer-term survival require further study.

A 2018 NICE interventional procedures guideline states that current evidence on the safety and efficacy of percutaneous balloon valvuloplasty for fetal critical aortic stenosis is limited in quantity and the results are inconsistent. Therefore, this procedure should only be used in the context of research.

There are many ongoing clinical trials evaluating various types of IUFS for multiple conditions. Additional information is available at www.clinicaltrials.gov. (Accessed March 11, 2020)

U.S. Food and Drug Administration (FDA)

This section is to be used for informational purposes only. FDA approval alone is not a basis for coverage.

The fetal interventions described in this policy are surgical procedures and are not subject to FDA approval.

References

The foregoing Oxford policy has been adapted from an existing UnitedHealthcare national policy that was researched, developed and approved by UnitedHealthcare Medical Technology Assessment Committee. [2020T0035U]

National Institute for Health and Care Excellence (NICE) Interventional procedures guidance [IPG613]. Percutaneous balloon valvuloplasty for fetal critical aortic stenosis. Published date: May 2018.

Policy History/Revision Information

<table>
<thead>
<tr>
<th>Date</th>
<th>Summary of Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>09/01/2020</td>
<td>Template Update</td>
</tr>
<tr>
<td></td>
<td>• Reformatted policy; transferred content to new template</td>
</tr>
<tr>
<td></td>
<td>• Removed and replaced section titled Conditions of Coverage with Prior Authorization Requirements</td>
</tr>
<tr>
<td></td>
<td>• Simplified and relocated language pertaining to prior authorization guidelines</td>
</tr>
<tr>
<td></td>
<td>• Removed language addressing benefit type and referral requirements (refer to the member specific benefit plan document)</td>
</tr>
<tr>
<td></td>
<td>• Replaced references to “precertification” with “prior authorization”</td>
</tr>
<tr>
<td></td>
<td>Supporting Information</td>
</tr>
<tr>
<td></td>
<td>• Archived previous policy version MATERNITY 024.18 T2</td>
</tr>
</tbody>
</table>

Instructions for Use

This Clinical Policy provides assistance in interpreting UnitedHealthcare Oxford standard benefit plans. When deciding coverage, the member specific benefit plan document must be referenced as the terms of the member specific benefit plan may differ from the standard plan. In the event of a conflict, the member specific benefit plan document governs. Before using this policy, please check the member specific benefit plan document and any applicable federal or state mandates.

UnitedHealthcare Oxford reserves the right to modify its Policies as necessary. This Clinical Policy is provided for informational purposes. It does not constitute medical advice.

The term Oxford includes Oxford Health Plans, LLC and all of its subsidiaries as appropriate for these policies. Unless otherwise stated, Oxford policies do not apply to Medicare Advantage members.

UnitedHealthcare may also use tools developed by third parties, such as the MCG™ Care Guidelines, to assist us in administering health benefits. UnitedHealthcare Oxford Clinical Policies are intended to be used in connection with the independent professional medical judgment of a qualified health care provider and do not constitute the practice of medicine or medical advice.