SURGICAL AND ABLATIVE PROCEDURES FOR VENOUS INSUFFICIENCY AND VARICOSE VEINS

Policy Number: OUTPATIENT 013.36 T2

Effective Date: September 1, 2019

Table of Contents

<table>
<thead>
<tr>
<th>Conditions of Coverage</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONDITIONS OF COVERAGE</td>
<td>1</td>
</tr>
<tr>
<td>COVERAGE RATIONALE</td>
<td>1</td>
</tr>
<tr>
<td>DOCUMENTATION REQUIREMENTS</td>
<td>2</td>
</tr>
<tr>
<td>DEFINITIONS</td>
<td>3</td>
</tr>
<tr>
<td>APPLICABLE CODES</td>
<td>4</td>
</tr>
<tr>
<td>DESCRIPTION OF SERVICES</td>
<td>5</td>
</tr>
<tr>
<td>BENEFIT CONSIDERATIONS</td>
<td>6</td>
</tr>
<tr>
<td>CLINICAL EVIDENCE</td>
<td>6</td>
</tr>
<tr>
<td>U.S. FOOD AND DRUG ADMINISTRATION</td>
<td>18</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>18</td>
</tr>
<tr>
<td>POLICY HISTORY/REVISION INFORMATION</td>
<td>23</td>
</tr>
<tr>
<td>INSTRUCTIONS FOR USE</td>
<td>23</td>
</tr>
</tbody>
</table>

Related Policies

- Cosmetic and Reconstructive Procedures
- Embolization of the Ovarian and Iliac Veins for Pelvic Congestion Syndrome
- Oxford's Outpatient Imaging Self-Referral

CONDITIONS OF COVERAGE

Applicable Lines of Business/Products: Oxford Commercial plan membership.

Benefit Type: General benefits package

Referral Required: No

Authorization Required: Yes

Precertification with Medical Director Review Required: Yes

Applicable Site(s) of Service: Office1,2, Outpatient1,2, Inpatient1,2

Special Considerations:

1. Precertification with review by a Medical Director or their designee is required.
2. **Participating Providers in the Office Setting:** Precertification is required for services performed in the office of a participating provider. **Non-Participating/Out-of-Network Providers in the Office Setting:** Precertification is not required, but is encouraged for out-of-network services performed in the office. If precertification is not obtained, Oxford will review for out-of-network benefits and medical necessity after the service is rendered.

COVERAGE RATIONALE

See Benefit Considerations
Varicose Vein Ablative and Stripping Procedures

The initial and subsequent radiofrequency ablation, endovenous laser ablation, Stripping, Ligation and excision of the Great Saphenous Vein (GSV) and Small Saphenous Veins (SSV) are considered reconstructive, proven and medically necessary when ALL of the following criteria are present:

- Junctional Reflux:
 - Ablative therapy for the GSV or SSV only if Junctional Reflux is demonstrated in these veins; or
 - Ablative therapy for Accessory Veins only if anatomically related persistent Junctional Reflux is demonstrated after the GSV or SSV have been removed or ablated.
- Individual must have one of the following Functional or Physical Impairments:
 - Skin ulceration; or
 - Documented episode(s) of frank bleeding of the Varicose Vein due to erosion of /or trauma to the skin; or
 - Documented Superficial Thrombophlebitis or documented Venous Stasis Dermatitis; or
 - Moderate to Severe Pain causing Functional or Physical Impairment.
- Venous size:
 - The GSV must be 5.5mm or greater when measured at the proximal thigh immediately below the saphenofemoral junction via Duplex Ultrasonography.
 - The Small Saphenous Vein or Accessory Veins must measure 5 mm or greater in diameter immediately below the appropriate junction.
- Duration of reflux, in the standing or reverse Trendelenburg position that meets the following parameters:
 - Greater than or equal to 500 milliseconds (ms) for the GSV, SSV or principle tributaries.
 - Perforating veins > 350 ms.
 - Some Duplex Ultrasound readings will describe this as moderate to severe reflux which will be acceptable.

See Coding Clarification section. Adherence to AMA coding guidance is required when requesting coverage of Endovenous Ablation procedures. Note that only one primary code may be requested for the initial vein treated, and only one add-on code per extremity may be requested for any subsequent vein(s) treated.

Ablation of perforator veins is considered reconstructive, proven and medically necessary when the following criteria are present:

- Evidence of perforator Venous Insufficiency measured by recent Duplex Ultrasonography report (see criteria above); and
- Perforator vein size is 3.5mm or greater; and
- Perforating vein lies beneath a healed or active venous stasis ulcer.

Endovenous Mechanochemical Ablation (MOCA) of Varicose Veins is unproven and not medically necessary due to insufficient evidence of efficacy.

Ligation Procedures

The following procedure is proven and medically necessary:

- Ligation at the saphenofemoral junction, as a stand-alone procedure, when used to prevent the propagation of an active clot to the deep venous system in individuals with ascending Superficial Thrombophlebitis who fail or are intolerant of anticoagulation therapy.

The following procedures are unproven and not medically necessary for treating Venous Reflux due to insufficient evidence of efficacy:

- Ligation of the GSV at the saphenofemoral junction, as a stand-alone procedure
- Ligation of the SSV at the saphenopopliteal junction, as a stand-alone procedure
- Ligation at the saphenofemoral junction, as an adjunct to radiofrequency ablation or endovenous laser ablation of the main saphenous veins

Other Procedures

The following procedures are unproven and not medically necessary for treating Venous Reflux due to insufficient evidence of efficacy:

- Endovascular embolization of Varicose Veins using cyanoacrylate-based adhesive
- Endovenous low-nitrogen foam sclerotherapy of incompetent GSV, lesser saphenous veins, and accessory saphenous veins

DOCUMENTATION REQUIREMENTS

Benefit coverage for health services is determined by the member specific benefit plan document and applicable laws that may require coverage for a specific service. The documentation requirements outlined below are used to assess whether the member meets the clinical criteria for coverage but do not guarantee coverage of the service requested.
Required Clinical Information

Surgical and Ablative Procedures for Venous Insufficiency and Varicose Veins

Medical notes documenting all of the following:
- Evaluation and complaints
- Documentation of the following:
 - Pain/other symptoms that interfere with daily activities related to vein disease
 - Functional impairment specifics (preparing meals, ability to walk, how long member can stand, getting dressed, driving)
- Documentation of the specific functional impairment related to vein disease:
 - Severity of symptoms
 - Which activities are affected by symptoms
 - Which extremity (right, left or both) and veins that will be treated
- Diagnostic studies with documentation of vein diameter and duration of reflux
- Prior conservative treatment and duration
- Pulses
- Documentation stating presence or absence of DVT (deep vein thrombosis), aneurysm, and/or tortuosity
- Proposed treatment plan with procedure code
- For inpatient requests, clinical documentation supporting the intent to admit the member to the inpatient level of care

DEFINITIONS

When applicable, refer to the member specific benefit plan document for definitions.

Accessory/Tributary Vein: Axial accessory or tributary saphenous veins indicate any venous segment ascending parallel to the Great Saphenous Vein and located more superficially above the saphenous fascia, both in the leg and in the thigh. These can include the anterior Accessory Vein, the postero-medial vein, circumflex veins [anterior or posterior], intersaphenous veins, Giacomini vein or posterior [Leonardo] or anterior arch veins.

Congenital Anomaly: A physical developmental defect that is present at the time of birth, and that is identified within the first twelve months of birth.

Cosmetic Procedures: Cosmetic Procedure are excluded from coverage. Procedures or services that change or improve appearance without significantly improving physiological function, as determined by us.

Duplex Ultrasonography: Combines a real-time B mode scanner with built-in Doppler capability. The B mode scanner outlines anatomical structure while Doppler detects the flow, direction of flow and flow velocity.

Endovenous Ablation: A minimally invasive procedure that uses heat generated by radiofrequency (RF) or laser energy to seal off damaged veins.

Functional or Physical Impairment: A physical or functional or physiological impairment causes deviation from the normal function of a tissue or organ. This results in a significantly limited, impaired, or delayed capacity to move, coordinate actions, or perform physical activities and is exhibited by difficulties in one or more of the following areas: physical and motor tasks; independent movement; performing basic life functions.

Great Saphenous Vein (GSV): The GSV originates from the dorsal arch of the foot and progresses medially and proximally along the distal extremity to join the common femoral vein.

Junctional Reflux: Reflux that exceeds a duration of 0.5 seconds at either:
- The saphenofemoral junction (SFJ) - Confluence of the Great Saphenous Vein and the femoral vein; or
- The saphenopopliteal junction (SPJ) - Confluence of the Small Saphenous Vein and the popliteal vein.

Ligation: Tying off a vein.

Moderate to Severe Pain: The Venous Clinical Severity Score (VCSS) describes Moderate Pain to be daily pain or other discomfort interfering with, but not preventing regular daily activities, and Severe Pain to be daily pain or discomfort that limits most regular daily activities (Vasquez et al. [American Venous Forum], 2010).

Reconstructive Procedures: Reconstructive Procedures when the primary purpose of the procedure is either of the following:
- Treatment of a medical condition.
• Improvement or restoration of physiologic function.

Reconstructive Procedures include surgery or other procedures which are related to an Injury, Sickness or Congenital Anomaly. The primary result of the procedure is not a changed or improved physical appearance.

Procedures that correct an anatomical Congenital Anomaly without improving or restoring physiologic function are considered Cosmetic Procedures. The fact that you may suffer psychological consequences or socially avoidant behavior as a result of an Injury, Sickness or Congenital Anomaly does not classify surgery (or other procedures done to relieve such consequences or behavior) as a reconstructive procedure.

Reticular Vein: Reticular Veins are dilated dermal veins less than 4 mm in diameter that communicate with either or both Telangiectasia and saphenous tributaries.

Sickness: physical illness, disease or Pregnancy. The term Sickness includes Mental Illness or substance-related and addictive disorders, regardless of the cause or origin of the Mental Illness or substance-related and addictive disorder.

Small Saphenous Vein: Superficial vein of the calf.

Spider Vein: Spider Veins/Telangiectasia are the permanent dilation of preexisting small blood vessels, generally up to 1 mm in size.

Stripping: Surgical removal of superficial veins.

Superficial Thrombophlebitis: Inflammation of a vein due to a blood clot in a vein just below the skin’s surface.

Telangiectasia: See Spider Vein.

Varicose Veins: Abnormally enlarged veins that are frequently visible under the surface of the skin; often appear blue, bulging and twisted.

Venous Reflux/Insufficiency: Venous Reflux is reversed blood flow in the veins (away from the heart). Abnormal (pathological reflux) is defined as reverse flow that lasts beyond a specified period of time as measured by Doppler ultrasound. Normal (physiological reflux) is defined as reverse flow that lasts less than a specified period of time as measured by Doppler ultrasound. Abnormal (pathological reflux) times exceed different thresholds depending on the system of veins:
• Deep veins: 1 sec
• Superficial veins: 0.5 sec
• Perforator veins: 0.35 sec

Venous Stasis Dermatitis: A skin inflammation due to the chronic buildup of fluid (swelling) under the skin.

APPLICABLE CODES

The following list(s) of procedure and/or diagnosis codes is provided for reference purposes only and may not be all inclusive. Listing of a code in this policy does not imply that the service described by the code is a covered or non-covered health service. Benefit coverage for health services is determined by the member specific benefit plan document and applicable laws that may require coverage for a specific service. The inclusion of a code does not imply any right to reimbursement or guarantee claim payment. Other Policies may apply.

Coding Clarification:

• According to the American Medical Association (AMA), CPT code 37241 is specific to venous embolization/occlusion and excludes lower extremity venous incompetency. Coding instructions state that 37241 should not be used to request treatment of incompetent extremity veins. For sclerosis of veins or Endovenous Ablation of incompetent extremity veins, see 36468-36479. (CPT Assistant, 2014)
• Adherence to AMA coding guidance is required when requesting endovenous ablation procedures.

Per AMA coding guidance, the initial incompetent vein treated (e.g., 36475) may only be requested once per extremity. For endovenous ablation, treatment of subsequent incompetent veins in the same extremity as the initial vein treated (e.g., 36476), only one add-on code per extremity may be requested, regardless of the number of additional vein(s) treated (CPT Assistant, November 2016).

Therefore, only one primary code may be requested for the initial vein treated, and only one add-on code per extremity may be requested for any subsequent vein(s) treated.
<table>
<thead>
<tr>
<th>CPT Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>36465</td>
<td>Injection of non-compounded foam sclerosant with ultrasound compression maneuvers to guide dispersion of the injectate, inclusive of all imaging guidance and monitoring; single incompetent extremity truncal vein (e.g., great saphenous vein, accessory saphenous vein)</td>
</tr>
<tr>
<td>36466</td>
<td>Injection of non-compounded foam sclerosant with ultrasound compression maneuvers to guide dispersion of the injectate, inclusive of all imaging guidance and monitoring; multiple incompetent truncal veins (e.g., great saphenous vein, accessory saphenous vein), same leg</td>
</tr>
<tr>
<td>36473</td>
<td>Endovenous ablation therapy of incompetent vein, extremity, inclusive of all imaging guidance and monitoring, percutaneous, mechanochemical; first vein treated</td>
</tr>
<tr>
<td>36474</td>
<td>Endovenous ablation therapy of incompetent vein, extremity, inclusive of all imaging guidance and monitoring, percutaneous, mechanochemical; subsequent vein(s) treated in a single extremity, each through separate access sites (List separately in addition to code for primary procedure)</td>
</tr>
<tr>
<td>36475</td>
<td>Endovenous ablation therapy of incompetent vein, extremity, inclusive of all imaging guidance and monitoring, percutaneous, radiofrequency; first vein treated</td>
</tr>
<tr>
<td>36476</td>
<td>Endovenous ablation therapy of incompetent vein, extremity, inclusive of all imaging guidance and monitoring, percutaneous, radiofrequency; subsequent vein(s) treated in a single extremity, each through separate access sites (List separately in addition to code for primary procedure)</td>
</tr>
<tr>
<td>36478</td>
<td>Endovenous ablation therapy of incompetent vein, extremity, inclusive of all imaging guidance and monitoring, percutaneous, laser; first vein treated</td>
</tr>
<tr>
<td>36479</td>
<td>Endovenous ablation therapy of incompetent vein, extremity, inclusive of all imaging guidance and monitoring, percutaneous, laser; subsequent vein(s) treated in a single extremity, each through separate access sites (List separately in addition to code for primary procedure)</td>
</tr>
<tr>
<td>36482</td>
<td>Endovenous ablation therapy of incompetent vein, extremity, by transcatheter delivery of a chemical adhesive (e.g., cyanoacrylate) remote from the access site, inclusive of all imaging guidance and monitoring, percutaneous; first vein treated</td>
</tr>
<tr>
<td>36483</td>
<td>Endovenous ablation therapy of incompetent vein, extremity, by transcatheter delivery of a chemical adhesive (e.g., cyanoacrylate) remote from the access site, inclusive of all imaging guidance and monitoring, percutaneous; subsequent vein(s) treated in a single extremity, each through separate access sites (List separately in addition to code for primary procedure)</td>
</tr>
<tr>
<td>37700</td>
<td>Ligation and division of long saphenous vein at sapheno-femoral junction, or distal interruptions</td>
</tr>
<tr>
<td>37718</td>
<td>Ligation, division, and stripping, short saphenous vein</td>
</tr>
<tr>
<td>37722</td>
<td>Ligation, division, and stripping, long (greater) saphenous veins from saphenofemoral junction to knee or below</td>
</tr>
<tr>
<td>37780</td>
<td>Ligation and division of short saphenous vein at sapheno-popliteal junction</td>
</tr>
<tr>
<td>37799</td>
<td>Unlisted procedure, vascular surgery</td>
</tr>
</tbody>
</table>

DESCRIPTION OF SERVICES

Varicose Veins are enlarged veins that are swollen and raised above the surface of the skin. They can be dark purple or blue, and look twisted and bulging. Varicose Veins are commonly found on the backs of the calves or on the inside of the leg. Veins have one-way valves that help keep blood flowing towards the heart. When the valves become weak or damaged and do not close properly, blood can back up and pool in the veins causing them to get larger. The resulting condition is known as Venous Insufficiency or Venous Reflux. Varicose Veins may lead to complications such as pain, blood clots or skin ulcers.

Duplex ultrasound is considered the gold standard for diagnosis of superficial venous incompetence. The CEAP (clinical, etiology, anatomy, pathophysiology) classification system is used to describe the degree of varicosity. The "C" part of CEAP classification is more useful and practical in rating the severity of Varicose Veins:
- C0: No visible or palpable signs of venous disease
- C1: Telangiectasies (Spider Veins) or Reticular Veins
• C2: Varicose Veins (diameter of vein is > 3mm)
• C3: Edema
• C4a: Pigmentation and eczema
• C4b: Lipodermatosclerosis and atrophi blanche
• C5: Healed venous ulcer
• C6: Active venous ulcer
(American Venous Forum [AVF], 2004)

Venous clinical severity scoring has been used to measure clinical improvement after treatment of varicose veins. Other venous severity scoring methods include Venous Severity Score, Venous Clinical Severity Score, Venous Segemental Disease Score. (AVF, 2018)

Preoperative venous duplex ultrasound is used to evaluate patients for venous insufficiency symptoms or suspected DVT; it can provide a road map of vein anatomy similar to contrast venography, as well as essential hemodynamic information about the presence of proximal obstruction, vein valve function, and venous reflux. (Lin et al., 2015)

Varicose Veins are treated with lifestyle changes and medical procedures done either to remove the veins or to close them. Endovenous Ablation therapy uses lasers or radiofrequency energy to create heat to close off a Varicose Vein. Vein Stripping and Ligation involves tying shut and removing the veins through small cuts in the skin. (National Heart, Lung and Blood Institute. [NHLBI], 2014)

Endomechanical ablation uses a specialized, rotating catheter (e.g., ClariVein) to close off a Varicose Vein by damaging the vessel lining prior to injecting a sclerosing agent. This technique is also referred to as mechanochemical ablation (MOCA), mechano-chemical endovenous ablation (MCEA) and mechanically enhanced endovenous chemical ablation. (MEECA)

Endovascular embolization using cyanoacrylate-based adhesive (e.g., VenaSeal™ Closure System) is a minimally invasive, non-thermal and non-sclerosant procedure that does not require tumescent anesthesia. The medical adhesive is used to close the lower extremity superficial truncal veins, such as the Great Saphenous Vein, in individuals with symptomatic Venous Reflux disease.

Endovascular embolization using endovenous foam sclerotherapy with polidocanol endovenous microfoam (PEM) (e.g., Varithena™ [Provensis Ltd.]), is a prescribed proprietary canister that generates a sterile, uniform, stable, low-nitrogen polidocanol 1% microfoam sclerosant intended for ultrasound-guided intravenous (IV) injection for treating venous incompetence and varicosities (Hayes, 2018). The aim of ultrasound-guided foam sclerotherapy for Varicose Veins is to damage the endothelial surface of the vein causing scarring and leading to blockage of the treated Varicose Veins. Sclerosant, in the form of a foam, is intended to have good surface area contact with the vein walls. [National Institute of Health and Care Excellence (NICE), 2013]

BENEFIT CONSIDERATIONS

Coverage Limitations and Exclusions
The following procedures are excluded from coverage:

- Procedures that correct an anatomical Congenital Anomaly without improving or restoring physiologic function are considered Cosmetic Procedures and therefore excluded from coverage. The fact that a Covered Person may suffer psychological consequences or socially avoidant behavior as a result of an Injury, Sickness or Congenital Anomaly does not classify surgery (or other procedures done to relieve such consequences or behavior) as a Reconstructive Procedure.
- Any procedure that does not meet the criteria in the Coverage Rationale section above.
- Treatment for Spider Veins and/or Telangiectasias is considered to be cosmetic and therefore excluded from coverage.
- Endovenous Ablation (radiofrequency and/or laser) of either reticular or telangiectatic Veins is not reconstructive and unproven not medically necessary and therefore excluded from coverage.

CLINICAL EVIDENCE

In a meta-analysis, Hamann et al. (2017) compared the long-term efficacy of different treatment modalities for varicose veins (high ligation with stripping (HL+S), endovenous thermal ablation (EVTA), mainly consisting of endovenous laser ablation (EVLA) or radiofrequency ablation, and ultrasound guided foam sclerotherapy (UGFS). Three randomized controlled trials (RCTs) and 10 follow-up studies of RCTs with follow-up ≥ 5 years were included. In total, 611 legs were treated with EVLA, 549 with HL+S, 121 with UGFS, and 114 with HL+EVLA. UGFS had significantly lower pooled anatomical success rates than HL+S, EVLA, and EVLA with high ligation: 34% (95% CI 26-44) versus 83% (95% CI 72-90), 88% (95% CI 82-92), and 88% (95% CI 17-100) respectively; p ≤ .001. The
pooled recurrent reflux rate at the SFJ was significantly lower for HL+S than UGFS (12%, 95% CI 7-20, vs. 29%, 95% CI 21-38; p ≤ .001) and EVLA (12%, 95% CI 7-20, vs. 22%, 95% CI 14-32; p = .038). VCSS scores were pooled for EVLA and HL+S, which showed similar improvements. Based on the results of the meta-analysis, EVLA and HL+S show higher success rates than UGFS 5 years after GSV treatment. Recurrent reflux rates at the SFJ were significantly lower in HL+S than UGFS and EVLA. VCSS scores were similar between EVLA and HL+S.

Boersma et al. (2016) performed a systematic review and meta-analysis of treatment modalities for small saphenous vein insufficiency. The review included 49 studies (5 randomized controlled trials, 44 cohort studies) reporting on the different treatment modalities: surgery (n=9), endovenous laser ablation (EVLA) (n=28), radiofrequency ablation (RFA) (n=9), ultrasound-guided foam sclerotherapy (UGFS) (n=6) and MOCA (n=1). The primary outcome of anatomical success was defined as closure of the treated vein on follow-up duplex ultrasound imaging. Secondary outcomes were technical success and major complications. The pooled anatomical success rate was 58.0% for surgery in 798 veins, 98.5% for EVLA in 2950 veins, 97.1% for RFA in 386 veins and 63.6% for UGFS in 494 veins. One study reported results of MOCA, with an anatomical success rate of 94%. Neurologic complications were most frequently reported after surgery and thermal ablation. Deep venous thrombosis was a rare complication. The authors concluded that EVLA and RFA are preferred to surgery and foam sclerotherapy in the treatment of small saphenous vein insufficiency. Although data on nonthermal techniques is still sparse, the potential benefits, especially the reduced risk of nerve injury, might be of considerable clinical importance.

O’Hare et al. (2008) conducted a multicenter, prospective cohort study of patients undergoing small saphenous vein surgery (SSV). Patients were evaluated at six weeks and one year after surgery. A total of 204 legs were reviewed at one year; 67 had small saphenous varicose vein stripping, 116 had saphenopopliteal junction (SPJ) disconnection only and the remainder had miscellaneous procedures. The incidence of visible recurrent varicosities at one year was lower after SSV stripping than after disconnection only, although this did not reach statistical significance. The rate of SPJ incompetence detected by duplex at one year was significantly lower in patients who underwent SSV stripping than in those who did not.

In a 5-year follow-up from two randomized controlled trials, Rass et al. (2015) compared the long-term clinical efficacy of endovenous laser ablation (EVLA) with high ligation and stripping (HLS) as standard treatment for great saphenous vein (GSV) incompetence. Two hundred and eighty one legs were evaluated at one year: 67 had small saphenous varicose vein stripping, 116 had saphenopopliteal junction (SPJ) disconnection only and the remainder had miscellaneous procedures. The incidence of visible recurrent varicosities at one year was lower after HLS than SSV stripping but did not differ between the groups.

Gauw et al. (2016) evaluated 5-year outcomes from a randomized, controlled trial to compare the long-term results (groin-related recurrence, great saphenous vein [GSV] occlusion rate, clinical class, etiology, anatomy, and pathophysiology [CEAP] staging, and quality of life [QoL]) after the treatment of a GSV incompetence by saphenofemoral ligation and stripping (SFL/S) with endovenous laser ablation bare fiber, 980 nm (EVLA). Patients (n=121; 130 legs) with GSV insufficiency and varicose veins were randomized to either undergo SFL/S or EVLA. At the 5-year follow-up, a significantly higher varicose vein recurrence rate originated at the SFJ region after EVLA compared with SFL/S. There were no differences in the relief of venous symptoms, CEAP staging, or general QoL between the groups.

In a multicenter, randomized controlled trial with up to 6 years follow-up, Flessenkämper et al. (2016) compared high ligation and stripping to endovenous laser ablation for the therapy of great saphenous vein varicosity. Patients (n=449 were randomized into three different treatment groups: high ligation and stripping group (n=159), endovenous laser ablation group (n=142; 980 nm, 30 W continuous mode, bare fiber) or a combination of laser ablation with high ligation (endovenous laser ablation group/ high ligation group, n=148). The authors observed that clinical recurrence appears with the same frequency in all three treatment groups, but the responsible pathological mechanisms seem to differ. Most reflux into the great saphenous vein and side branches appears after endovenous laser ablation, whereas more saphenofemoral junction-independent recurrences are seen after high ligation/stripping.

In a literature review of long-term results following high ligation supplemented by sclerotherapy, Recek (2004) found that ligation of the saphenofemoral junction alone provokes a higher recurrence rate in comparison with high ligation and stripping. The hemodynamic improvement achieved immediately after high ligation deteriorates progressively during the follow-up owing to recurrent reflux.
Theivacumar et al. (2008) conducted a randomized controlled trial to assess whether more extensive GSV ablation enhances resolution and influences symptom improvement in patients with previous above-knee (AK) great saphenous vein (GSV) endovenous laser ablation (EVLA). Sixty-eight limbs (65 patients) with varicosities and above and below-knee GSV reflux were randomized to Group A: AK-EVLA (n = 23); Group B: EVLA mid-calf to groin (n = 23); and Group C: AK-EVLA, concomitant below-knee GSV foam sclerotherapy (n = 22). Primary outcomes were residual varicocities requiring sclerotherapy (6 weeks), improvement in Aberdeen varicose vein severity scores (AVVSS, 12 weeks), patient satisfaction, and complication rates. EVLA ablated the treated GSV in all limbs. Sclerotherapy requirements were Group A: 14/23 (61%); Group B: 4/23 (17%); and Group C: 8/22 (36%); chi2 = 9.3 (2 df) P = .01 with P(A-B) = .006; P(B-C) = 0.19; P(A-C) = 0.14. AVVSS scores improved in all groups as follows: A: 14.8 (9.3-22.6) to 6.4 (3.2-9.1), (P < .001); B: 15.8 (10.2-24.5) to 2.5 (1.1-3.7), (P < .001); and C: 15.1 (9.0-23.1) to 4.1 (2.3-6.8), (P < .001) and P(A-B) = 0.011, P(A-C) = 0.042. Patient satisfaction was highest in Group B. BK-EVLA was not associated with saphenous nerve injury. The authors concluded that extended EVLA is safe, increases spontaneous resolution of varicocities, and has a greater impact on symptom reduction.

Woźniak et al. (2016) conducted a quantitative-qualitative analysis of complications and failure of endovenous laser ablation (EVLA) and radiofrequency ablation (RFA) in a 5-year follow-up. One hundred ten adult patients with varicose veins clinical grade C2 to C6, treated for isolated great saphenous vein (GSV) or small saphenous vein (SSV) insufficiency in a single lower extremity in 2009 to 2010, were enrolled and subdivided into EVLA (n = 56) and RFA (n = 54) groups. Both groups were compared for demography, disease stage, affected veins, perioperative, and postoperative complications as well as treatment efficacy. The perioperative and postoperative complications were statistically insignificant. Treatment efficacy, expressed as the number of participants with recurrent varicosity and recanalization, was comparable in both groups. The clinically significant recanalization rate was 3.6% and 5.6% in EVLA and RFA groups, respectively. The authors concluded that EVLA and RFA for the management of lower extremity varicose vein offer comparable efficacy and safety in a 5-year follow-up.

In a systematic review and meta-analysis of randomized controls of endovenous ablation (EVA) of the great saphenous vein (GSV), O’Donnell et al. (2016) evaluated recurrence and cause of varicose veins after surgery (REVAS). Seven RCTs provided eight comparisons (one study compared both types of EVA to a comparator arm): three used radiofrequency ablation, and five employed endovenous laser ablation. Overall recurrent varicose veins developed in 125 limbs after EVA (22%), with no difference in the incidence vs the ligation and stripping (L&S) group (22%) based on the number of limbs available at the time of the development of recurrence for both groups, but this incidence is dependent on the length of follow-up after the initial treatment. Neovascularization occurred in only two limbs (2%) after EVA vs 18 (18%) in the L&S group. Recanalization was the most common cause of REVAS for EVA (32%; 40 of 125 limbs), followed by the development of anterior accessory saphenous vein incompetence (19%; 23 of 125 limbs). The authors concluded that there is no difference in the incidence of REVAS for EVA vs L&S, but the causes of REVAS are different with L&S.

Chaar et al. (2011) conducted a retrospective review of patients undergoing endovenous laser therapy on the great saphenous vein (GSV), small saphenous vein (SSV), or anterior accessory veins (AAV). A total of 732 ablations were reviewed, involving 175 men and 557 women. Veins that measured < 1 cm in diameter were considered small, whereas those that measured ≥ 1 cm at any point were considered to be large. Average follow-up with duplex ultrasound was 3 weeks, and all patients underwent at least one postprocedural ultrasound. In all, 565 (77.3%) GSVs, 113 (15.5%) SSVs, and 53 (7.3%) AAVs were treated. A total of 88 ablations were performed on veins measuring ≥ 1 cm, 12% of all treated veins. In all, 82 GSVs, three SSVs, and three AAVs measured > 1 cm, and GSVs comprised 93.2% of treated large veins (p < 0.001 vs. entire cohort). Based on the results, complication rates and closure rates are not significantly different for veins of diameter ≥ 1 cm and smaller veins. Although more energy is used, the authors observed that this has not translated into higher complication rates, thus in their opinion making EVLT safe and effective for large vein closure. Significantly higher failure and closure rates were seen in SSV and AAV treatment as compared with GSV treatment.

Theivacumar et al. (2011) conducted a cohort study to assess the effectiveness and safety of EVLA in the management of recurrent varicose veins (RVVS). One-hundred four limbs (95 patients) undergoing EVLA for RVVS were grouped according to pattern of reflux. For patients with frequent SFJ/GSV (Group GR) and SP/ SSV (Group SR) varicosities ablation rates and QoL (Aberdeen Varicose Vein Severity Scores (AVVSS)) were compared with those for age/sex matched patients undergoing EVLA for primary GSV/SSV dependent varicose veins (Groups GP and SP). In patients with RVVS the axial vein was ablated in 102/104 (98%) limbs while 2 GSVs (group GR) partially recanalised by 3 months (GSV ablated in 49/51 (96%) limbs versus 50/51 (98%) limbs in GP [p = 0.2]). Improvements in AVVSS at 3 months (median GR: 14.2 (inter-quartile range (IQR) 10.2-18.9) to 3.2(1.2-6.4), p < 0.001; GP: median 15.9(IQR 11.4-22.7) to 3.8(1.1-5.6), p < 0.001, Mann-Whitney u-test) were similar (78% versus 76%, p = 0.23). The SSV was ablated in 24/24 limbs in groups GR and SP and the % improvement in AVVSS was 83% (median 14.4 (IQR 8.2-19.4) to 2.4 (1.9-4.6), p < 0.001, Mann-Whitney u-test) and 84% (median 13.8 (IQR 6.3-17.5) to 2.2 (1.2-5.1), p < 0.001) respectively (p = 0.33). These improvements persisted at 1 year follow-up. A further 29 limbs with isolated anterior accessory great saphenous vein (AAGSV) or segmental GSV/SSV reflux were successfully ablated.
Complication rates for primary and RVVS were similar. The authors concluded that EVLA is a safe and effective option for the treatment of RVVS and could be a preferred option for suitable patients.

Labropoulos et al. (2010) conducted a prospective study to determine the prevalence, distribution, and extent of varicosities and focal dilatations in the saphenous trunks, their association with the sites of reflux, and their correlation with CEAP classes. Color-flow duplex scan imaging was used to evaluate the entire venous system from groin to ankle for reflux and obstruction. Varicose segments and focal dilatations of the great and small saphenous veins (GSV and SSV) were recorded, and the diameters throughout the length of the saphenous trunks were measured. The presence of varicosities in the tributaries and accessory veins were documented. The included 500 patients (681 limbs) were divided into two groups based on CEAP class: group A (C2 + C3) and group B (C4-6). Group A had significantly more women than group B and a younger mean age (48 vs 56 years). Overall, GSV reflux (86%) was more prevalent than SSV reflux (17%), P < .0001. Saphenous trunk diameters, saphenofemoral junction (SFJ) and saphenopopliteal junction (SPJ) involvement were greater in group B, (P < .01). Group C had smaller saphenous diameters compared to group A in all locations (P < .05) but the malleoli. The prevalence of the saphenous varicose segments in both groups was small with the GSV in group B being the highest (4.3%) and the SSV in group A being the smallest (1.2%). Focal dilatations were significantly more prevalent than varicosities in the saphenous trunks (P < .0001). Varicosities of tributaries and accessory veins were more prevalent than those of saphenous trunks (P < .0001). The mean length of varicose segments in the saphenous trunks was short (3.8 cm, range, 2.1-6.4 for group A vs 4.1 cm, range, 2.3-8.3 for group B, P = .09). The authors concluded that focal dilatations are far more common than varicosities. Because both of these entities are more prevalent in the accessory saphenous veins and tributaries, and CEAP class correlates positively with the extent of reflux and saphenous trunk diameter, studies on earlier interventions are warranted to prevent CVD progression.

Theivacumar et al. (2009) compared 33 patients (21 women and 12 men) undergoing anterior accessory great saphenous vein (AAGSV) EVLA alone (group A) and 33 age/sex-matched controls undergoing GSV EVLA (Group B) to assess assesses the short-term efficacy (abolition of reflux on Duplex ultrasound) of EVLA of the AAGSV with preservation of a competent GSV in the treatment of varicose veins occurring due to isolated AAGSV incompetence. Comparisons included ultrasound assessment of SFJ competence, successful axial vein ablation, Aberdeen Varicose Vein Symptom Severity Scores (AVVSS) and a visual analogue patient-satisfaction scale. At the 1-year follow-up, EVLA had successfully abolished the target vein reflux (AAGSV: median length 19 cm (inter-quartile range, IQR: 14-24 cm) vs. GSV: 32 cm (IQR 24-42 cm)) and had restored SFJ competence in all patients. Twenty of the 33 patients (61%) in group A and 14 of the 33 (42%) in group B (p=0.218) required post-ablation sclerotherapy at 6 weeks post-procedure for residual varicosities. The AVVSS at 12 months follow-up had improved from the pre-treatment scores in both the groups (group A: median score 4.1 (IQR 2.1-5.2) vs. 11.6 (IQR: 6.9-15.1) p<0.001; group B: median score 3.3 (IQR 1.1-4.5) vs. 14.5 (IQR 7.6-20.2), p<0.001), with no significant difference between the groups. The authors concluded that AAGSV EVLA abolishes SFJ reflux, improves symptom scores and is, therefore, suitable for treating varicose veins associated with AAGSV reflux.

Wichers et al. (2005) performed a systematic review of randomized trials evaluating the safety and efficacy of medical (anticoagulants) or surgical (ligation or stripping of the affected veins) treatments of superficial vein thrombosis (SVT) for the prevention of deep vein thrombosis (DVT) and pulmonary embolism (PE). Five studies were included. Pooling of the data was not possible due to the heterogeneity among the studies. Three studies had major methodological drawbacks limiting the clinical applicability of the results. One of the remaining (pilot) studies showed a non-significant trend in favor of high-compared to low-dose unfractionated heparin for the prevention of venous thromboembolism (VTE). The last remaining study showed a non-significant trend in favor of short-term treatment with low-molecular-weight heparin (LMWH) or a non-steroidal anti-inflammatory drug (NSAID) as compared to placebo shortly after treatment with respect to VTE, but the apparent benefit disappeared after three months of follow-up. More randomized controlled trials are needed before any evidence-based recommendations on the treatment of SVT for the prevention of VTE can be given. With the lack of solid evidence, the authors suggest treating patients with at least intermediate doses of LMWH. Surgical treatment of SVT may be considered when varicose veins are involved.

Sullivan et al. (2001) performed a systematic review of the literature evaluating surgical and medical management of above-knee superficial thrombophlebitis (AK-STP) not involving the deep venous system. Six studies were included for a total of 246 patients in the surgical arm and 88 patients in the medical arm. Surgical treatment modalities halt the progression of thrombus into the deep venous system through the saphenofemoral junction and reduce the incidence of PE. The two types of surgical treatment were ligation of the great saphenous vein at the saphenofemoral junction or ligation in combination with stripping of the phlebitic vein. Medical therapy consisted of initial intravenous heparin followed by warfarin therapy for a duration varying between 6 weeks and 6 months. The authors offered no definitive conclusions due to reporting of varied outcomes, different follow-up criteria and the retrospective nature of the studies. The differences between the surgical and medical groups were small. The review concludes that medical management with anticoagulants is superior for minimizing complications and preventing subsequent deep vein thrombosis and
pulmonary embolism development as compared to surgical treatment with ligation of the great saphenous vein at the saphenofemoral junction or ligation and stripping.

Winterborn et al. (2004) conducted an 11 year follow-up study on the Jones et al. patient group. A cumulative total of 83 legs had developed clinically recurrent varicose veins by 11 years (62%). There was no statistically significant difference between the ligation-only and the stripping groups. Reoperation was required for 20 of 69 legs that underwent ligation alone compared with 7 of 64 legs that had additional long saphenous vein stripping. Freedom from reoperation at 11 years was 70% after ligation, compared with 86% after stripping. The presence of neovascularization, an incompetent superficial vessel in the thigh or an incompetent saphenofemoral junction on duplex imaging at 2 years postoperatively increased the risk of a patient's developing clinically recurrent veins. Results from the study indicate that stripping the long saphenous vein is recommended as part of routine varicose vein surgery as it reduces the risk of reoperation after 11 years, although it did not reduce the rate of visible recurrent veins.

Fifteen hundred consecutive patients were examined by Labropoulos et al. (2004) using duplex ultrasound (DU) to determine the patterns and clinical importance of saphenofemoral junction (SFJ) reflux in patients with chronic venous disease (CVD) and a normal great saphenous vein (GSV) trunk. Patients with reflux involving the SFJ and/or its tributaries only were included and its prevalence and patterns were studied. Patients with GSV trunk reflux or in any other veins were excluded. The SFJ diameter was categorized as normal, dilated or varicose. The results of surgery were evaluated by DU in 42 patients 1 year after the procedure. SFJ area incompetence with a competent GSV trunk occurred in 8.8% of limbs. It was significantly more common in CEAP class 2, 13.6% compared to class 3, 8.2% (p=0.03), class 1, 2.7%, class 4, 4.4% and classes 5 and 6 together, 1.5% (p<0.001 for all). The SFJ had a normal diameter in 21%, dilated in 62% and varicose in 17%. Reflux was seen in 39% of limbs with a normal SFJ diameter, in 85% of those with a dilated SFJ and in all varicose SFJs. Of the 42 operated limbs, 27 had ligation and division of the SFJ and tributary phlebectomies. Fifteen had tributary phlebectomies only, leaving the SFJ intact. At one-year follow-up, SFJ area reflux was found in six limbs (14.3%), involving the SFJ alone in 1, a main tributary in 1 and 4 small tributaries. No reflux was found in the GSV trunk. All but two of the 42 patients were satisfied with the results. The authors observed that SFJ reflux with tributary involvement and sparing of the GSV trunk occurs in 8.8% of CVD patients. Such reflux is found in the entire spectrum of CVD, but it is more common in class 2. The authors concluded that local surgery with or without SFJ ligation has very good results at 1 year. In addition, they recommend that duplex ultrasound scanning prior to treatment is important in all patients so that the intact GSV can be spared.

Proebstle et al. (2003) studied 85 consecutive patients with clinical stage C(2-6) E(P,S) A(S,P,D) P(R) disease to establish the incidence of early recanalization after endovenous laser treatment (ELT) and evaluate the histopathologic features of reperfused and excised GSV. Twelve months of follow-up with duplex scanning at regular intervals was possible in 104 treated veins (95.4%) in 82 patients (96.5%). Recanalized vessels were removed surgically and examined at histopathology. ELT-induced occlusion proved permanent at duplex scanning over 12 months of follow-up in 94 of 104 GSV (90.4%) in 73 patients. In 4 patients, 5 GSV (4.8%) were recanalized completely after 1 week, after 3 months (n = 3), or after 12 months. Another 5 GSV (4.8%) in 5 patients exhibited incomplete proximal recanalization over the 12 months of follow-up. Finally, 9 recanalized vessels (8.6%) required further treatment with high ligation and stripping. The authors concluded that early recanalization requiring retreatment is observed in less than 10% of GSV after ELT. The histopathologic pattern mimics recanalization after thrombophlebitic occlusion.

Labropoulos et al. (2003) conducted a prospective study to determine the upper limits of normal for duration and maximum velocity of retrograde flow (RF) in lower extremity veins. Eighty limbs in 40 healthy subjects and 60 limbs in 45 patients with chronic venous disease were examined with duplex scanning in the standing and supine positions. Each limb was assessed for reflux at 16 venous sites, including the common femoral, deep femoral, and proximal and distal femoral veins; proximal and distal popliteal veins; gastrocnemial vein; anterior and posterior tibial veins; peroneal vein; greater saphenous vein, at the saphenofemoral junction, thigh, upper calf, and lower calf; and lesser saphenous vein, at the saphenopopliteal junction and mid-calf. Perforator veins along the course of these veins were also assessed. In the healthy volunteers, 1553 vein segments were assessed, including 480 superficial vein segments, 800 deep vein segments, and 273 perforator vein segments; and in the patients, 1272 vein segments were assessed, including 360 superficial vein segments, 600 deep vein segments, and 312 perforator vein segments. Detection and measurement of reflux were performed at duplex scanning. Standard pneumatic cuff compression pressure was used to elicit reflux. Duration of RF and peak vein velocity were measured immediately after release of compression. Based on the results, the authors observed that the cutoff value for reflux in the superficial and deep calf veins is greater than 500 ms. However, in their opinion the reflux cutoff value for the femoropopliteal veins should be greater than 1000 ms. Outward flow in the perforating veins should be considered abnormal at greater than 350 ms. Reflux testing should be performed with the patient standing.

In a systematic review, Darwood and Gough (2009) found that adjunctive saphenofemoral ligation is not necessary to achieve success with endovenous laser therapy of the great saphenous vein. Similarly, a randomized controlled trial conducted by Desselhoff et al. (2008) found that the addition of saphenofemoral ligation to endovenous ablation made no difference to the short-term outcome of varicose vein treatment. Long-term follow-up at 5 years found similar
results. (Disselhoff et al. 2011) Further studies with larger patient populations are needed to establish the superiority of adjunctive saphenofemoral ligation in improving long-term outcomes.

Theivacumar et al. (2007) also found that saphenofemoral ligation following endovenous laser ablation was unnecessary. Persistent non-refluxing great saphenous vein tributaries at the saphenofemoral junction did not have an adverse impact on clinical outcome 1 year after successful endovenous laser ablation of the great saphenous vein.

Marsten et al. (2006) evaluated 89 limbs in 80 patients with CEAP clinical class 3-6 CVI and superficial venous reflux who were treated with saphenous ablation utilizing radiofrequency (RF) or endovenous laser treatment (EVLT). There were no significant differences in preoperative characteristics between the groups treated with RFA or EVLT. Patients were reexamined within 3 months of ablation with duplex to determine anatomic success of the procedure, and with repeat air plethysmography (APG) to determine the degree of hemodynamic improvement. Postoperatively, 86% of limbs demonstrated near total closure of the saphenous vein to within 5 cm of the saphenofemoral junction. Eight percent remained open for 5-10 cm from the junction, and 6% demonstrated minimal or no saphenous ablation. The VFI improved significantly after ablation in both the RF and EVLT groups. Postablation, 78% of the 89 limbs were normal, with a VFI <2 mL/second, and 17% were moderately abnormal, between 2 and 4 mL/second. VCSS scores (11.5 +/- 4.5 preablation) decreased significantly after ablation to 4.4 +/- 2.3. The authors concluded that minimally invasive saphenous ablation, using either RFA or EVLT, corrects or significantly improved the hemodynamic abnormality and clinical symptoms associated with superficial venous reflux in more than 90% of cases.

In a cohort study, Navarro et al. (2002) evaluated the clinical significance of GSV diameter determined in the thigh and calf as a marker of global hemodynamic impairment and clinical severity in a model comprising patients with saphenofemoral junction and truncal GSV incompetence. Eighty-five consecutive patients, aged 28 to 82 (mean, 46.2) years; 112 lower limbs with saphenofemoral junction and truncal GSV incompetence were investigated. The GSV diameter was measured on standing at the knee, and at 10, 20, and 30 cm above and below the knee, and in the thigh and calf, respectively, using B-mode imaging. The venous filling index (VFI), venous volume (VV), and residual volume fraction (RVF) were measured by air plethysmography. The GSV diameter at all 7 limb levels studied correlated well with VV (except at the distal calf), VFI, RVF, and CEAP (P< or = .009 for all). A GSV diameter of 5.5 mm or less predicted the absence of abnormal reflux, with a sensitivity of 78%, a specificity of 87%, positive and negative predictive values of 78%, and an accuracy of 82%. A GSV diameter of 7.3 mm or greater predicted critical reflux (VFI >7 mL/s), with an 80% sensitivity, an 85% specificity, and an 84% accuracy. In the authors’ opinion, GSV diameter proved to be a relatively accurate measure of hemodynamic impairment and clinical severity in a model of saphenofemoral junction and GSV incompetence, predicting not only the absence of abnormal reflux, but also the presence of critical venous incompetence, assisting in clinical decision making before considering greater saphenectomy.

Chandler et al. (2000) conducted a prospective, comparative study to evaluate the effect of extended saphenofemoral junction (SFJ) ligation when the greater saphenous vein (GSV) has been eliminated from participating in thigh reflux by means of endovenous obliteration. Sixty limbs treated with SFJ ligation and 120 limbs treated without high ligation were selected from an ongoing, multicenter, endovenous obliteration trial on the basis of the their having primary varicose veins, GSV reflux, and early treatment dates. Five (8%) high-ligation limbs and seven (6%) limbs without high ligation with patent veins at 6 weeks or less were excluded as unsuccessful obliterations. Treatment significantly reduced symptoms and CEAP clinical class in both groups (P = .0001). Recurrent reflux developed in one (2%) of 49 high-ligation limbs and eight (8%) of 97 limbs without high ligation by 6 months (P = .273). New instances of reflux did not appear thereafter in 57 limbs followed to 12 months. Recurrent varicose veins occurred in three high-ligation limbs and four limbs without high ligation by 6 months and in one additional high-ligation limb and two additional limbs without high ligation by 12 months. Actuarial recurrence curves were not statistically different with or without SFJ ligation (P > .156), predicting greater than 90% freedom from recurrent reflux and varicosities at 1 year for both groups. According to the authors, these early results suggest that extended SFJ ligation may add little to effective GSV obliteration, but their findings are not sufficiently robust to warrant abandonment of SFJ ligation as currently practiced in the management of primary varicose veins associated with GSV reflux.
Labropoulos et al. (1999) studied the distribution and extent of non-truncal superficial venous reflux and its association with the signs and symptoms of chronic venous disease (CVD) in eighty-four limbs in 62 patients with signs and symptoms of CVD and evidence of reflux on continuous-wave Doppler. Incompetent superficial vein tributaries were imaged throughout their extent and both ends were identified. Limbs with reflux in the main trunk of the saphenous veins or the deep, perforator or muscular veins, superficial or deep vein thrombosis, injection sclerotherapy, varicose-vein surgery, arterial disease and inflammation of non-venous origin were excluded from the study. The authors observed that this data indicate that reflux confined to superficial tributaries is found throughout the lower limb. Because this reflux is present without greater and lesser saphenous trunk, perforator and deep-vein incompetence or proximal obstruction, it shows that reflux can develop in any vein without an apparent feeding source. Greater saphenous tributaries are affected significantly more often than those of lesser saphenous, while non-saphenous reflux is uncommon. Most limbs have signs and symptoms of CVD class 2 and 15% belong in classes 3 and 4.

Endovenous Mechnochemical Ablation

Vos et al. (2017) conducted a systematic review and meta-analysis to evaluate the efficacy of endovenous mechanochemical ablation (MOCA) and cyanoacrylate vein ablation (CAVA) for GSV incompetence. Eligible articles were prospective studies that included patients treated for GSV incompetence and described the primary outcome. Exclusion criteria were full text not available, case reports, retrospective studies, small series (n < 10), reviews, abstracts, animal studies, studies of small saphenous vein incompetence, and recurrent GSV incompetence. Primary outcome was anatomic success. Secondary outcomes were initial technical success, Venous Clinical Severity Score, Aberdeen Varicose Vein Questionnaire score, and complications. Fifteen articles met the inclusion criteria. Pooled anatomic success for MOCA and CAVA was 94.7% and 94.8% at 6 months and 94.1% and 89.0% at 1 year, respectively. Venous Clinical Severity Score and Aberdeen Varicose Vein Questionnaire score significantly improved after treatment with MOCA and CAVA. The authors conclude that both of these non-thermal techniques are promising that could serve as alternatives for thermal ablation techniques. However, to determine their exact role in clinical practice, high-quality randomized controlled trials comparing these novel modalities with well-established techniques are required.

Witte et al. (2017) conducted a systematic cohort to report on the anatomical, technical, and clinical success. The literature search identified 759 records, of which 13 were included, describing 10 unique cohorts. A total of 1521 veins (1267 great saphenous vein and 254 small saphenous vein) were included, with cohort sizes ranging from 30 to 570 veins. The pooled anatomical success rate after short-term follow up was 92% (95% CI 90-94%) (n = 1314 veins). After 6 and 12 months these numbers were 92% (95% CI 88-95%) (n = 284) and 91% (95% CI 86-94%) (n = 228), respectively. The long-term anatomical success rates at 2 and 3 years were 91% (95% CI 85-95%) (n = 136) and 87% (95% CI 75-94%) (n = 48), respectively. Major complications and especially nerve injury were very rare (≤ 0.2%). All studies were of moderate or good quality using the MINORS scoring scale. The authors concluded that MOCA using the ClariVein in combination with liquid sclerosant is associated with an anatomical success rate ranging from 87% to 92% and good clinical success. However, they reported that no randomized controlled trials are available studying the anatomical success after MOCA compared to the endothermal ablation.

Kim et al. (2017) evaluated whether early efficacy in endovenous mechanochemical ablation (MOCA) is maintained at 24 months. Patients with reflux in the great saphenous vein involving the sapheno-femoral junction and no previous venous interventions were included. The occlusion rate of treated veins was assessed with duplex ultrasound. Patient clinical improvement was assessed by Clinical-Etiology-Anatomy-Pathophysiology (CEAP) class and venous clinical severity score. Of the initial 126 patients, there were 65 patients with 24 month follow-up. Of these 65 patients, 70% were female, with a mean age of 70 ± 14 years and an average BMI of 30.5 ± 6. The mean great saphenous vein diameter in the upper thigh was 7.6 mm and the mean treatment length was 39 cm. Adjunctive treatment of the varicosities was performed in 14% of patients during the procedure. Closure rates were 100% at one week, 98% at three months, 95% at 12 months, and 92% at 24 months. There was one patient with complete and four with partial recanalization ranging from 7 to 12 cm (mean length 9 cm). There was significant improvement in CEAP and venous clinical severity score (P < .001) for all time intervals. Early high occlusion rate with mechanochemical ablation is associated with significant clinical improvement which is maintained at 24 months, which according to the authors, is suggestive of a good option for the treatment of great saphenous vein incompetence. Longer-term outcomes are needed to evaluate MOCA’s efficacy.

Witte et al. (2017) reported midterm results of MOCA for treating great saphenous vein (GSV) insufficiency. In a 1-year period, 85 consecutive patients undergoing MOCA with polidocanol in 104 limbs were enrolled in a prospective registry. The patients were evaluated at baseline and during follow-up (4 weeks and 1, 2, and 3 years) using duplex ultrasound, the CEAP (clinical, etiologic, anatomic and pathophysiologic) classification, the Venous Clinical Severity Score (VCSS), the RAND Short Form 36-Item Health Survey (RAND-SF36), and the Aberdeen Varicose Vein Questionnaire (AVVQ). Primary outcome measures were clinical and anatomic success. Secondary outcome measures included general and disease-specific quality of life and re-interventions. After a median follow-up of 36 months (interquartile range 12.5, 46.3), recanalization occurred in 15 (15%) of 102 successfully treated vein segments.
Anatomic success was 92%, 90%, and 87% after 1, 2, and 3 years, respectively. The VCSS improved at all time intervals compared to the preprocedure median. The clinical success at 3 years was 83%. The AVVQ and RAND-SF36 scores showed an improvement at all time intervals compared to baseline values. Between 12 and 36 months, however, a significant deterioration was observed in VCSS, which was accompanied by worsening of disease-specific and general quality of life. Although the authors concluded that MOCA demonstrated to be an effective treatment modality for GSV insufficiency at midterm follow-up, clinical results seemed to drop over time.

In a systematic review and meta-analysis to compare traditional surgery and endovenous laser ablation (EVLA) for the treatment of venous insufficiency of the great saphenous veins, Quarto et al. (2016) evaluated 756 legs treated with a conventional surgical procedure and 755 legs treated with EVLA. Only RCTs based at least on 6 months follow-up were considered eligible in the study. The authors did not find a statistically significant difference in the presence or absence of reflux between the two techniques, and noted that although EVLA did not prove to be superior in terms of recurrence to the surgical technique, EVLA remains a viable treatment option in patients with impaired great saphenous vein, reducing postoperative pain and hospital stay.

Go et al. (2016) reviewed the cases of 24 limbs of 17 patients who underwent EVLA between 2004 and 2007 that were examined with duplex ultrasonographic scans at a mean follow-up of 66 months. There were five recurrences of saphenofemoral junction reflux. The occlusion rate was 79.2% at a mean follow-up of 66.1 months. There were 14 recanalizations and 5 recurrences of the great saphenous vein. Five partial and nine total recanalizations were observed. The authors concluded that EVLA is an effective and minimally invasive treatment for varicose veins and although their long-term result was acceptable, the result was not outstanding. A study limitation was the small patient population.

Bootun et al. (2016) compared pain scores in patients treated for primary varicose veins. A total of 119 patients were randomized to mecha-nochemical ablation (n=60) or radiofrequency ablation (n=59). Maximum pain score was significantly lower in the mecha-nochemical ablation group compared to the radiofrequency ablation group. Average pain score was also significantly lower in the mecha-nochemical ablation group compared to the radiofrequency ablation group. Sixty-six percent attended follow-up at one month, and the complete or proximal occlusion rates were 92% for both groups. At one month, the clinical and quality of life scores for both groups had similar improvements. The long-term data including occlusion rates at six months and quality of life scores are being collected.

Bishawi et al. (2014) conducted a prospective observational multicenter study on the efficacy of MOCA in patients with lower extremity chronic venous disease. A total of 126 patients were included at baseline, 81% females. The mean diameter of the great saphenous vein in the upper thigh was 7.3 mm and the mean treatment length was 38 cm. Adjunctive treatment was performed in 11% of patients during the procedure. Closure rates were 100% at one week, 98% at three months and 94% at six months. Post-procedure complications included hematoma, ecchymosis and thrombophlebitis. There were no cases of venous thromboembolism. The authors concluded that MOCA of the saphenous veins has the advantage of endovenous ablation without tumescent anesthesia. This study is limited by lack of randomization and control and short-term follow-up.

Vun et al. (2015) assessed the efficacy of the ClariVein system for the treatment of superficial vein incompetence. Fifty-one great saphenous veins and six small saphenous veins were treated. Duplex showed a technical success rate of 91%. Comparison with 50 RFA and 40 EVLA procedures showed procedure times were significantly less for ClariVein than for either RFA or EVLA. Median pain scores were significantly lower for ClariVein than for RFA and EVLA. No major complications or deep vein thromboses were reported. Study limitations included small sample size, lack of randomization and control and short-term follow-up. Further data on long-term clinical outcomes is needed.

In a prospective comparison study, van Eekeren et al. (2013) evaluated postoperative pain and quality of life after radiofrequency ablation (RFA) and MOCA for great saphenous vein (GSV) incompetence. Sixty-eight patients with unilateral GSV incompetence were included. Patients treated with MOCA reported significantly less postoperative pain than patients treated with RFA during the first 14 days after treatment. The lower postoperative pain score was associated with a significantly earlier return to normal activities and work. At 6 weeks, patients in both groups perceived an improved change in health status and an improved disease-specific quality of life. This study is limited by lack of randomization and control, small sample size and short-term follow-up.

In a prospective cohort study, Boersma et al. (2013) evaluated the feasibility, safety and 1-year results of MOCA of small saphenous vein (SSV) insufficiency. Fifty consecutive patients were treated using the ClariVein device and polidocanol. At the 6-week assessment, all treated veins were occluded. One-year follow-up showed a 94% anatomic success rate and no major complications. The authors concluded that MOCA is a safe, feasible and efficacious technique for treating SSV insufficiency. This study is limited by lack of randomization and control, small sample size and short-term follow-up.
In a pilot study, Van Eekeren et al. (2011) evaluated the feasibility and safety of endovenous MOCA for the treatment of great saphenous vein (GSV) incompetence. Thirty limbs in 25 patients (18 women; mean age 52 years) with GSV incompetence were treated with the ClariVein® device. Initial technical success, complications, patient satisfaction and classification by venous clinical severity score (VCSS) were assessed 6 weeks after the treatment. Initial technical success of MOCA was 100%. There were no major adverse events. Duplex ultrasonography at 6 weeks showed 26 (87%) of 30 veins were completely occluded. Three veins showed partial recanalization in the proximal and distal GSV. One patient had full segment recanalization and was successfully retreated. The VCSS significantly improved at 6 weeks. Patient satisfaction was high, with a median satisfaction of 8.8 on a 0-10 scale. The authors concluded that endovenous MOCA is feasible and safe in the treatment of GSV incompetence. Larger studies with a prolonged follow-up are indicated to prove the efficacy of this technique.

In an updated guideline on endovenous mechanochemical ablation for varicose veins, the National Institute for Health and Care Excellence (NICE) (2016) states that current evidence on the safety and efficacy of endovenous mechanochemical ablation for varicose veins appears adequate to support the use of this procedure provided that standard arrangements are in place for consent, audit and clinical governance. Clinicians are encouraged to collect longer term follow-up data.

Endovascular Embolization with Cyanoacrylate-Based Adhesive

Morrison et al. (2018) reported 36-month outcomes of the VeClose randomized controlled trial, a multicenter, prospective, randomized controlled trial in which 222 symptomatic patients with incompetent great saphenous veins were assigned to either cyanoacrylate closure or radiofrequency ablation. The primary endpoint, complete closure of the target great saphenous vein, was determined using duplex ultrasound examination starting from three-month visit. At month 36, the great saphenous vein closure rates were 94.4% for the cyanoacrylate closure group and 91.9% for the radiofrequency ablation group. Stable improvement in symptoms and quality of life was observed in both groups. Adverse event rates between the 24- and 36-month visits were similar between the groups as were serious adverse events which were infrequent and judged unrelated to either the device or the procedure in both groups. In the authors’ opinion, the results of this trial continue to demonstrate the safety and efficacy of cyanoacrylate closure for the treatment of great saphenous vein incompetence with great saphenous vein closure rate at 36 months similar to that of radiofrequency ablation. Follow-up of the patient cohorts post-procedure will continue up to 60 months.

Gibson et al. (2018a) reported 24-month results from the randomized trial of cyanoacrylate closure (CAC) versus radiofrequency ablation (RFA) for the treatment of incompetent GSVs (VeClose trial). Of 222 randomized patients, 171 completed the 24-month follow-up, which included 87 from the CAC group and 84 from the RFA group. The 24-month complete closure rate was 95.3% in the CAC group and 94.0% in the RFA group, demonstrating continued noninferiority of CAC compared with RFA (P = 0.0034). Symptoms and quality of life improved similarly in both groups. No clinically significant device- or procedure-related late adverse events were reported. The authors concluded that both CAC and RFA were effective in closure of the target GSV, resulting in similar and significant improvements in the patient's quality of life through 24 months, suggesting that CAC of the GSV is safe and durable out to 2 years. Longer-term outcomes from randomized controlled trials are needed.

Gibson et al. (2018b) reported three-month data of a post-market evaluation of endovenous cyanoacrylate closure of the VenaSeal system (the WAVES study). Fifty subjects with symptomatic GSV, SSV, and/or accessory saphenous vein incompetence were treated with the VenaSeal system with no postprocedure compression stockings. Concomitant procedures were not allowed as part of the original study protocol. Treating physicians predicted the type and nature of any concomitant procedures that they would usually perform at the time of ablation, if not limited by the constraints of the study. Evaluations were performed at one week, one and three months and included duplex ultrasound, numeric pain rating scale, revised venous clinical severity score, the Aberdeen Varicose Vein Questionnaire, and time to return to work and normal activities. At the three-month visit, the need for and type of adjunctive procedures were recorded. Complete closure at three months was achieved in 70 (99%) of the treated veins (48 great saphenous veins, 14 accessory saphenous veins, eight small saphenous veins). Revised venous clinical severity score improved from 6.4 ± 2.2 to 1.8 ± 1.5 (P < .001) and Aberdeen Varicose Vein Questionnaire from 17.3 ± 7.9 to 6.5 ± 7.2 (P < .0001). Sixty-six percent of patients underwent tributary treatment at three months. The percentage of patients who required adjunctive treatments at three months was lower than had been predicted by the treating physicians (65% versus 96%, p=.0002). The authors reported that closure rates were high in the absence of the use of compression stockings or side branch treatment. Improvement in quality of life was significant, and the need for and extent of concomitant procedures was significantly less than had been predicted by the treating
Additional studies with larger patient populations are needed to further evaluate the need for concomitant procedures with the VenaSeal system.

Morrison et al. (2017) provided 12-month outcomes from the VeClose study, a randomized controlled trial in which patients were randomly assigned to receive either endovenous cyanoacrylate closure (CAC; n = 108) or radiofrequency ablation (RFA; n = 114). Of 222 enrolled and randomized subjects, a 12-month follow-up was obtained for 192 (95 CAC and 97 RFA; total follow-up rate, 192/222 [86.5%]). By month 12, the complete occlusion rate was nearly identical in both groups (97.2% in the CAC group and 97.0% in the RFA group). Twelve-month freedom from recanalization was similar in the CAC and RFA groups, although there was a trend toward greater freedom from recanalization in the CAC group (P = .08). The authors reported that symptoms and quality of life improved equally in both groups.

The VeClose study (Morrison et al., 2015) was a prospective, multicenter randomized controlled U.S. pivotal trial which compared cyanoacrylate adhesive (VenaSeal®, Medtronic) to radiofrequency thermal ablation (ClosureFast®, Medtronic) for non-inferiority in closure of incompetent great saphenous veins (GSV). Data from this clinical study were the basis for the FDA’s pre-market approval (PMA) decision in February 2015. Two hundred twenty-two subjects with symptomatic GSV incompetence were randomly assigned to receive either with VenaSeal or RFA (n = 114) (the first 20 of whom were roll-ins for training of the investigation site personnel and not included in data analysis reports). After discharge, subjects returned to the clinic on day 3 and again at months 1 and 3. The study’s primary end point was closure of the target vein at month 3 as assessed by duplex ultrasound and adjudicated by an independent vascular ultrasound core laboratory. Statistical testing focused on showing noninferiority with a 10% delta conditionally followed by superiority testing. No adjunctive procedures such as phlebectomy and US foam sclerotherapy were allowed until after the month 3 visit. Fewer patients required phlebectomy than had been predicted, and fewer than predicted incisions were also required. The 3-month closure rates were 99% for VenaSeal and 96% for RFA. The authors concluded that cyanoacrylate ablation was proven to be noninferior to RFA for the treatment of incompetent GSVs at month 3 after the procedure. Both treatment methods showed good safety profiles. The authors also note that cyanoacrylate ablation does not require tumescent anesthesia and is associated with less postprocedure ecchymosis. Further studies will be needed to confirm successful closure as well as to demonstrate other advantages of the VenaSeal® procedure, such as lack of necessity for post-procedural compression and any additional benefits of this non-tumescent technique. The study will continue to its three-year conclusion to provide more perspective from longer-term results.

Gibson and Ferris (2017) reported results of the prospective WAVES study of cyanoacrylate closure for the treatment of great saphenous veins, small saphenous veins, and/or accessory saphenous veins up to 20 mm in diameter (n=50). Compression stockings post-procedure were not utilized. Patients returned at 1 week and 1 month for follow-up. All treated veins (48 great saphenous vein, 14 accessory saphenous veins, and 8 small saphenous veins) had complete closure by duplex ultrasound at seven days and one month. Mean time to return to work and normal activities was 0.2 ± 1.1 and 2.4 ± 4.1 days, respectively. The revised venous clinical severity score was improved to 1.8 ± 1.4 (p < .001) and Aberdeen Varicose Vein Questionnaire score to 8.9 ± 6.6 (p < .001) at one month. Phlebitis in the treatment area or side branches occurred in 10 subjects (20%) and completely resolved in all but one subject (2%) by one month. The authors concluded that cyanoacrylate closure is safe and effective for the treatment of one or more incompetent saphenous or accessory saphenous veins, closure rates were high even in the absence of the use of compression stockings or side branch treatment. Time back to work or normal activities was short and improvements in venous severity scores and QOL were in the authors’ opinion significant, comparing favorably with alternative treatment methods. Randomized controlled trials with a larger patient population and longer follow-up periods are needed to validate findings.

Bozkurt and Yilmaz (2016) conducted a prospective comparative study of 310 adult subjects who were treated with cyanoacrylate ablation or endovenous laser ablation. The primary endpoint of this study was complete occlusion of the great saphenous vein. One, three, and 12 months closure rates were 87.1, 91.7, and 92.2% for endovenous laser ablation and 96.7, 96.6, and 95.8% for cyanoacrylate ablation groups. Closure rate at first month was significantly better in cyanoacrylate ablation group (<.001). Although there is a trend of better closure rates in cyanoacrylate ablation patients, this difference did not reach to the statistical difference at sixth and 12th month (p = 0.127 and 0.138, respectively). The authors concluded that the efficacy and safety analysis shows that cyanoacrylate ablation is a safe, simple method which can be recommended as an effective endovenous ablation technique. However, follow-up data of greater than one year is needed to clarify the future role of cyanoacrylate ablation for the treatment incompetent great saphenous veins.

Almeida et al. (2015) evaluated the safety and effectiveness of endovenous cyanoacrylate-based embolization of incompetent great saphenous veins in 38 patients. At 12 months, 36 patients were available for follow-up and 24 patients at 24 months. Complete occlusion of the treated great saphenous vein was confirmed by duplex ultrasound in all patients except for one complete and two partial recanalizations observed at, 1, 3 and 6 months of follow-up, respectively. Kaplan-Meier analysis yielded an occlusion rate of 92.0% (95% CI 0.836-1.0) at 24 months follow-up.
Venous Clinical Severity Score improved in all patients from a mean of 6.1 ± 2.7 at baseline to 1.3 ± 1.1, 1.5 ± 1.4 and 2.7 ± 2.5 at 6, 12 and 24 months, respectively (p < .0001). Edema improved in 89% of legs (n = 34) at 48 hours follow-up. At baseline, only 13% were free from pain. At 6, 12 and 24 months, 84%, 78% and 64% were free from leg pain, respectively. Small sample size is a limitation to this study.

A prospective multicenter study was conducted on 78 patients with GSV reflux using cyanoacrylate embolization. (Proebstle et al., 2015) Clinical examination, quality of life assessment and duplex ultrasound were performed at 2 days, 1, 3, 6, and 12 months. 68 (97.1%) were available for 12-month follow-up. Two-day follow-up showed one proximal and one distal partial recanalization. Three additional proximal recanalizations were observed at 3-month (n = 2) and 6-month (n = 1) follow-up. Cumulative 12-month survival free from recanalization was 92.9% (95% confidence interval, 87.0%-99.1%). Mean (standard deviation) Venous Clinical Severity Score improved from 4.3 Å± 2.3 at baseline to 1.1 Å± 1.3 at 12 months. Aberdeen Varicose Vein Questionnaire score showed an improvement from 16.3 at baseline to 6.7 at 12 months (P < .0001). Side effects were generally mild; a phlebitic reaction occurred in eight cases (11.4%) with a median duration of 6.5 days (range, 2-12 days). Pain without a phlebitic reaction was observed in five patients (8.6%) for a median duration of 1 day (range, 0 -12 days). No serious adverse event occurred. Paresthesia was not observed. The authors concluded that endovenous CA embolization of refluxing GSVs is safe and effective without the use of tumescent anesthesia or compression stockings. Additional studies are needed to validate the effectiveness of cyanoacrylate embolization.

In a 2015 interventional procedure guideline, the National Institute for Health and Care Excellence (NICE) reports that current evidence on the safety and efficacy of cyanoacrylate glue occlusion for varicose veins is limited in quantity and quality. In addition, as the published evidence is relatively small, rare or uncommon risks may not yet be apparent.

Endovenous Foam Sclerotherapy

In a 5-year follow-up of a randomized clinical trial comparing open surgery, foam sclerotherapy and endovenous laser ablation for great saphenous varicose veins, Våhåaho et al. (2018) evaluated long-term results of surgery, EVLA and UGFS in the treatment of GSV reflux. Patients with symptomatic GSV reflux were randomized to undergo either open surgery, EVLA or UGFS. The main outcome measure was the occlusion rate of the GSV at 5 years after operation. The study included 196 patients; of these, 166 (84.7 per cent) participated in the 5-year follow-up. At 5 years, the GSV occlusion rate was 96 (95 per cent c.i. 91 to 100) per cent in the open surgery group, 89 (82 to 98) per cent after EVLA and 51 (38 to 64) per cent after UGFS (P < 0.001). For patients who had received no additional treatment during follow-up, the occlusion rates were 96 per cent (46 of 48), 89 per cent (51 of 57) and 41 per cent (16 of 39) respectively. UGFS without further GSV treatment was successful in only 16 of 59 patients (27 per cent) at 5 years. The authors concluded that UGFS has significantly inferior occlusion rates compared with open surgery or EVLA, and results in additional treatments.

Lawaetz et al. (2017) compared the outcomes 5 years after treatment of varicose veins with endovenous radiofrequency ablation (RFA), endovenous laser ablation (EVLA), ultrasound guided foam sclerotherapy (UGFS) or high ligation and stripping (HL/S) by assessing technical efficacy, clinical recurrence and the rate of reoperations. Five hundred patients (580 legs) with GSV reflux and varicose veins were randomized to one of the 4 treatments. Follow-up included clinical and duplex ultrasound examinations. During 5 years there was a difference in the rate of GSV recanalization, recurrence and reoperations across the groups, KM P<0.001, P<0.01, P<0.001 respectively. Thus 8 in the RFA group (Kaplan Meier [KM] estimate 5.8%), 8 in the EVLA group (KM estimate 6.8%), 37 (KM estimate 31.5%) in the UGFS group and 8 in the HL/S group (KM estimate 6.3%) of GSVs recanalized or had a failed stripping procedure. Nineteen (RFA) (KM estimate 18.7%), 42 (EVLA) (KM estimate 38.6%), 28 (UGFS) (KM estimate 31.7%) and 38 (HL/S) (KM estimate 34.6%) legs developed recurrent varicose veins. Within 5 years after treatment, 19 (RFA) (KM estimate 17%), 19 (EVLA) (KM estimate 18.7%), 43 (UGFS) (KM estimate 37.7%) and 25 (HL/S) (KM estimate 23.4%) legs were retreated. More recanalizations of the GSV occurred after UGFS and no difference in the technical efficacy was found between the other modalities during 5-year follow-up. According to the authors, the higher frequency of clinical recurrence after EVLA and HL/S cannot be explained and requires confirmation in other studies.

Gibson et al. (2017) conducted a randomized, placebo-controlled, multicenter study to evaluate the safety and efficacy of polidocanol endovenous microfoam (1%, Varithena® [polidocanol injectable foam]). Patients (n=77) with symptomatic, visible varicose veins were randomized to treatment with either Varithena 1% or placebo. Patients were assessed at baseline and weeks 1, 4, 8, and 12 post-treatment. The data showed that Varithena provided greater mean changes from baseline in patient-reported assessments of symptoms (e.g., heaviness, aching, swelling, throbbing, itching [HASTI®] score 30.7 points vs 16.7 points, p=0.0009, primary endpoint; and modified Venous Insufficiency Epidemiological and Economic Study-Quality-of-Life/Symptoms [m-VEINES-QOL/Sym; p<0.001]), physician-assessed VCSS, and physician- and patient-assessed appearance compared with placebo. The HASTI score correlated highly with the modified-VEINES-QOL/Sym and Chronic Venous Insufficiency Questionnaire-2 scores (r = 0.7 to 0.9, p ≤ 0.001). Adverse events included contusion, incision-site hematoma, and limb discomfort. Venous thrombus adverse events were reported as mild and generally resolved without sequelae. Large randomized controlled trials with longer-term outcomes are needed to evaluate the clinical utility of this procedure.
In a multicenter, randomized, placebo-controlled, blinded study in patients with great saphenous vein incompetence and symptomatic and visible superficial venous disease, Vasquez et al. (2017) evaluated the efficacy and safety of polidocanol endovenous microfoam (PEM 0.5%, 1.0%) and placebo each administered with endovenous thermal ablation. Co-primary endpoints were physician-assessed and patient-assessed appearance change from baseline to week 8. A total of 117 patients received treatment (38 placebo, 39 PEM 0.5%, 40 PEM 1%). Physician-rated vein appearance at week 8 was significantly better with PEM (p=0.001 vs. placebo); patient-assessed appearance trended similarly. In the authors’ opinion, polidocanol endovenous microfoam provided improvements in clinically meaningful change in patient-assessed and physician-assessed appearance (p<0.05), need for additional treatment (p<0.05), saphenofemoral junction reflux elimination, symptoms, and QOL. In PEM recipients, the most frequent adverse event was superficial thrombophlebitis (35.4%). A study limitation is short follow-up period for data analysis.

King et al. (2015) designed this pivotal multicenter, parallel group study (VANISH-1), to determine if a single administration of ≤15 mL of pharmaceutical-grade polidocanol endovenous microfoam (PEM) (Varithena [polidocanol injectable foam]) could alleviate symptoms and improve appearance of varicose veins in a typical population of patients with moderate to very severe symptoms of superficial venous incompetence and visible varicosities of the great saphenous vein (GSV) system. The primary endpoint was patient-reported venous symptom improvement measured by change from baseline to week 8 in 7-day average VVSymQ score. Patients (n=279) were randomized to five groups: PEM 0.125% (control), 0.5%, 1%, 2%, or placebo. At week 8, VVSymQ scores for the pooled PEM group (0.5% + 1% + 2%; p < .0001) and individual dose concentrations (p < .001) were greater as compared to placebo. Most adverse events were mild and resolved without sequelae. No pulmonary emboli were reported. The authors concluded that this study demonstrated that a single administration of up to 15 mL of PEM is a safe, effective, and convenient treatment for the symptoms of superficial venous incompetence and the appearance of visible varicosities of the GSV system. Doses of 0.5%, 1%, and 2% PEM appear to have an acceptable risk-benefit ratio. Additional outcome reporting is planned to evaluate the long-term durability of this procedure.

In the pivotal VANISH-2 trial, Todd et al. (2015) evaluated the efficacy and safety of polidocanol endovenous microfoam in treatment of symptoms and appearance in patients with saphenofemoral junction incompetence due to reflux of the great saphenous vein or major accessory veins. Patients were randomized equally to receive polidocanol endovenous microfoam 0.5%, polidocanol endovenous microfoam 1.0% or placebo. In 232 treated patients, polidocanol endovenous microfoam 0.5% and polidocanol endovenous microfoam 1.0% were superior to placebo, with a larger improvement in symptoms (VVSymQ (~6.01 and -5.06, respectively, versus -2.00; P<0.0001) and greater improvements in physician and patient assessments of appearance (P<0.0001). These findings were supported by the results of duplex ultrasound and other clinical measures. Of the 230 polidocanol endovenous microfoam-treated patients (including open-label patients), 60% had an adverse event compared with 39% of placebo; 95% were mild or moderate. The authors concluded that polidocanol endovenous microfoam provided clinically meaningful benefit in treating symptoms and appearance in patients with varicose veins. Longer-term outcomes are needed to evaluate the clinical utility of this procedure.

Lal et al. (2017) evaluated the relationship between patient-reported symptoms and functional and psychological impact of varicose veins following treatment with polidocanol endovenous microfoam (PEM) 1%. Data were pooled from two randomized trials on varicose vein treatment. In 221 patients (109 PEM 1%; 112 placebo), PEM 1% was associated with median improvements of 2.5 points and 4.0 points on the m-VEINES-QOL/Sym functional limitations and m-VEINES-QOL/Sym psychological limitations scores, compared to 0 and 1.0 point. Cumulative distribution function curves revealed that 20-30% more patients in the PEM 1% group achieved clinically meaningful functional and psychological improvement versus placebo group. Patients with above-average symptom improvement had better functional and psychological improvement. PEM 1% treatment had higher odds of clinically meaningful functional and psychological improvement. Length of post-procedure follow-up was not provided.

The National Institute for Health and Care Excellence (NICE) 2013 interventional procedure guidance on ultrasound-guided foam sclerotherapy specifies that if symptoms related to varicose veins are severe, the main treatment options include endovenous laser treatment and radiofrequency ablation, and surgery (ligation and stripping of the great saphenous veins or ligation with or without stripping of the small saphenous veins, and phlebectomy). The NICE 2013 clinical guideline on the diagnosis and treatment of varicose veins adds that if endovenous ablation is unsuitable, offer ultrasound guided foam sclerotherapy.

Professional Societies

Society for Vascular Surgery (SVS) / American Venous Forum (AVF)

The SVS and AVF released joint clinical practice guidelines regarding the care of patients with varicose veins. (Gloviczki et al., 2011) The guidelines state that endovenous thermal ablation is recommended over high ligation and inversion stripping of the saphenous vein to the level of the knee. For treatment of the incompetent saphenous vein, the SVS and AVF recommend endovenous thermal ablation over chemical ablation with foam. The guidelines do not
discuss MOCA. The policy also states that patients who undergo high ligation alone of the great saphenous vein (GSV) have recurrent reflux in the residual GSV. This causes new symptoms and increases the risk of reoperation.

American College of Phlebology

The American College of Phlebology Guidelines Committee (Gibson et al., 2017) performed a systematic review of the literature regarding the clinical impact and treatment of incompetent accessory saphenous veins. They developed a consensus opinion that patients with symptomatic incompetence of the accessory great saphenous veins (anterior and posterior accessory saphenous veins) be treated with endovenous thermal ablation (laser or radiofrequency) or ultrasound-guided foam sclerotherapy to eliminate symptomatology (Recommendation Grade 1C).

The American College of Phlebology Guidelines Committee (2016) updated their evidence-based recommendations for treatment of superficial venous disease of the lower leg. They recommend that named veins (great saphenous vein (GSV), small saphenous vein (SSV), anterior accessory of the great saphenous vein (AAGSV), posterior accessory of the great saphenous vein (PAGSV), intersaphenous vein (Vein of Giacomini)]) must have a reflux time > 500 msec regardless of the reported vein diameter (Grade 1A).

Endovenous thermal ablation (laser and radiofrequency) is the Committee’s preferred treatment for saphenous and accessory saphenous (GSV, SSV, AAGSV, PAGSV) vein incompetence (Grade 1B). They suggest mechanical/chemical ablation may also be used to treat truncal venous reflux (Grade 2B). They further comment that open surgery is appropriate in veins not amenable to endovenous procedures but otherwise is not recommended because of increased pain, convalescent time, and morbidity (Grade 1B).

U.S. FOOD AND DRUG ADMINISTRATION (FDA)

Vein ligation surgery is a procedure and therefore not subject to FDA regulation.

The ClariVein® infusion catheter (Vascular Insights) received FDA approval (K071468) on March 20, 2008. The device is designed to introduce physician-specified medicaments into the peripheral vasculature. See the following website for more information: http://www.accessdata.fda.gov/cdrh_docs/pdf7/K071468.pdf. (Accessed May 2, 2019)

The VenaSeal™ Closure System received the FDA’s pre-market approval (PMA) on February 20, 2015 (P140018). The device is indicated for the permanent closure of lower extremity superficial truncal veins, such as the great saphenous vein (GSV), through endovenous embolization with coaptation. VenaSeal is intended for use in adults with clinically symptomatic venous reflux as diagnosed by duplex ultrasound (DUS). See the following website for more information: https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpma/pma.cfm?id=P140018. (Accessed May 2, 2019)

Varithena (polidocanol injectable foam) (Provenis Ltd.) received FDA approval on November 25, 2013 as a sclerosing agent indicated for the treatment of incompetent great saphenous veins, accessory saphenous veins and visible varicosities of the great saphenous vein system above and below the knee. See the following websites for more information:
- https://www.accessdata.fda.gov/drugsatfda_docs/appletter/2013/205098Orig1s000ltr.pdf
- https://www.accessdata.fda.gov/drugsatfda_docs/label/2013/205098s000lbl.pdf

(Accessed May 2, 2019)

REFERENCES

The foregoing Oxford policy has been adapted from an existing UnitedHealthcare national policy that was researched, developed and approved by UnitedHealthcare Medical Technology Assessment Committee. [2019T0447Y]

Flessenkämper J, Hartmann M, Hartmann K et al. Endovenous laser ablation with and without high ligation compared to high ligation and stripping for treatment of great saphenous varicose veins: Results of a multicentre randomised controlled trial with up to 6 years follow-up. Phlebology. 2016 Feb;31(1):23-33.

Todd KL 3rd, Wright DI, VANISH-2 Investigator Group. The VANISH-2 study: a randomized, blinded, multicenter study to evaluate the efficacy and safety of polidocanol endovenous microfoam 0.5% and 1.0% compared with placebo for the treatment of saphenofemoral junction incompetence. Phlebology. 2014 Oct;29(9):608-18.

POLICY HISTORY/REVISION INFORMATION

<table>
<thead>
<tr>
<th>Date</th>
<th>Action/Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>09/01/2019</td>
<td></td>
</tr>
</tbody>
</table>

Template Update
- Added Documentation Requirements section

Coverage Rationale
- Added language to clarify:
 - *Initial and subsequent* radiofrequency ablation, endovenous laser ablation, Stripping, Ligation and excision of the Great Saphenous Vein (GSV) and Small Saphenous Veins (SSV) are considered reconstructive, proven and medically necessary when all of the [listed] criteria are present
 - The individual must have one of the [listed] Functional or Physical Impairments
 - Adherence to AMA coding guidance is required when requesting coverage of endovenous ablation procedures; refer to Coding Clarification [in the Applicable Codes section of the policy]
 - Note that only one primary code may be requested for the initial vein treated, and only one add-on code per extremity may be requested for any subsequent vein(s) treated
 - Replaced language indicating *endovenous foam sclerotherapy of incompetent GSV, lesser saphenous veins, and accessory saphenous veins is unproven and not medically necessary for treating Venous Reflux* with *endovenous low-nitrogen foam sclerotherapy of incompetent GSV, lesser saphenous veins, and accessory saphenous veins is unproven and not medically necessary for treating Venous Reflux*

Applicable Codes
- Added Coding Clarification language to indicate:
 - Adherence to AMA coding guidance is required when requesting endovenous ablation procedures
 - Per AMA coding guidance, the initial incompetent vein treated (e.g., 36475) may only be requested once per extremity
 - For endovenous ablation, treatment of subsequent incompetent veins in the same extremity as the initial vein treated (e.g., 36476), only one add-on code per extremity may be requested, regardless of the number of additional vein(s) treated
 - Therefore, only one primary code may be requested for the initial vein treated, and only one add-on code per extremity may be requested for any subsequent vein(s) treated

Supporting Information
- Updated References section to reflect the most current information
- Archived previous policy version OUTPATIENT 013.35 T2

INSTRUCTIONS FOR USE

This Clinical Policy provides assistance in interpreting UnitedHealthcare Oxford standard benefit plans. When deciding coverage, the member specific benefit plan document must be referenced as the terms of the member specific benefit plan may differ from the standard plan. In the event of a conflict, the member specific benefit plan document governs. Before using this policy, please check the member specific benefit plan document and any applicable federal or state mandates. UnitedHealthcare Oxford reserves the right to modify its Policies as necessary. This Clinical Policy is provided for informational purposes. It does not constitute medical advice.

The term Oxford includes Oxford Health Plans, LLC and all of its subsidiaries as appropriate for these policies. Unless otherwise stated, Oxford policies do not apply to Medicare Advantage members.

UnitedHealthcare may also use tools developed by third parties, such as the MCG™ Care Guidelines, to assist us in administering health benefits. UnitedHealthcare Oxford Clinical Policies are intended to be used in connection with the independent professional medical judgment of a qualified health care provider and do not constitute the practice of medicine or medical advice.