

UnitedHealthcare of California (HMO)
UnitedHealthcare Benefits Plan of California (EPO/POS)
UnitedHealthcare of Oklahoma, Inc.
UnitedHealthcare of Oregon, Inc.
UnitedHealthcare Benefits of Texas, Inc.
UnitedHealthcare of Washington, Inc.

UnitedHealthcare® West Medical Management Guideline

Pharmacogenetic Panel Testing

Guideline Number: MMG157.Q **Effective Date**: July 1, 2024

Instructions for Use

Table of Contents	Page
Coverage Rationale	
Medical Records Documentation Used for Reviews	1
Definitions	
Applicable Codes	1
Description of Services	3
Clinical Evidence	3
U.S. Food and Drug Administration	14
References	
Guideline History/Revision Information	
Instructions for Use	

Related Medical Management Guideline

Cardiovascular Disease Risk Tests

Coverage Rationale

The use of pharmacogenetic Multi-Gene Panels (5 or more genes) to guide therapy decisions is proven and medically necessary for antidepressant and antipsychotic medications when all the following criteria are met:

- The individual has a diagnosis of major depressive disorder or generalized anxiety disorder; and
- The individual has failed at least one prior medication to treat their condition; and
- The Multi-Gene Panel has no more than 15 relevant genes

The use of pharmacogenetic Multi-Gene Panels (5 or more genes) for genetic polymorphisms for any other indication, including but not limited to pain management, cardiovascular drugs, anthracyclines, or polypharmacy, is unproven and not medically necessary for evaluating drug-metabolizer status due to insufficient evidence of efficacy.

The use of the PrismRA® molecular signature test is unproven and not medically necessary for evaluating likelihood of inadequate response to anti-TNF therapies for rheumatoid arthritis due to insufficient evidence of efficacy.

Medical Records Documentation Used for Reviews

Benefit coverage for health services is determined by the member specific benefit plan document and applicable laws that may require coverage for a specific service. Medical records documentation may be required to assess whether the member meets the clinical criteria for coverage but does not guarantee coverage of the service requested; refer to the protocol titled Medical Records Documentation Used for Reviews.

Definitions

Multi-Gene Panel: Genetic tests that use next-generation sequencing to test multiple genes simultaneously. Also called multi-gene test, multiple-gene panel test and multiple-gene test. (National Cancer Institute Dictionary of Genetics)

Applicable Codes

The following list(s) of procedure and/or diagnosis codes is provided for reference purposes only and may not be all inclusive. Listing of a code in this guideline does not imply that the service described by the code is a covered or non-

covered health service. Benefit coverage for health services is determined by the member specific benefit plan document and applicable laws that may require coverage for a specific service. The inclusion of a code does not imply any right to reimbursement or guarantee claim payment. Other Policies and Guidelines may apply.

CPT Code	Description
0029U	Drug metabolism (adverse drug reactions and drug response), targeted sequence analysis (i.e., CYP1A2, CYP2C19, CYP2C9, CYP2D6, CYP3A4, CYP3A5, CYP4F2, SLCO1B1, VKORC1 and rs12777823)
0078U	Pain management (opioid-use disorder) genotyping panel, 16 common variants (i.e., ABCB1, COMT, DAT1, DBH, DOR, DRD1, DRD2, DRD4, GABA, GAL, HTR2A, HTTLPR, MTHFR, MUOR, OPRK1, OPRM1), buccal swab or other germline tissue sample, algorithm reported as positive or negative risk of opioid-use disorder
0173U	Psychiatry (i.e., depression, anxiety), genomic analysis panel, includes variant analysis of 14 genes
0175U	Psychiatry (e.g., depression, anxiety), genomic analysis panel, variant analysis of 15 genes
0345U	Psychiatry (e.g., depression, anxiety, attention deficit hyperactivity disorder [ADHD]), genomic analysis panel, variant analysis of 15 genes, including deletion/duplication analysis of CYP2D6
0347U	Drug metabolism or processing (multiple conditions), whole blood or buccal specimen, DNA analysis, 16 gene report, with variant analysis and reported phenotypes
0348U	Drug metabolism or processing (multiple conditions), whole blood or buccal specimen, DNA analysis, 25 gene report, with variant analysis and reported phenotypes
0349U	Drug metabolism or processing (multiple conditions), whole blood or buccal specimen, DNA analysis, 27 gene report, with variant analysis, including reported phenotypes and impacted genedrug interactions
0350U	Drug metabolism or processing (multiple conditions), whole blood or buccal specimen, DNA analysis, 27 gene report, with variant analysis and reported phenotypes
0380U	Drug metabolism (adverse drug reactions and drug response), targeted sequence analysis, 20 gene variants and CYP2D6 deletion or duplication analysis with reported genotype and phenotype
0392U	Drug metabolism (depression, anxiety, attention deficit hyperactivity disorder [ADHD]), gene-drug interactions, variant analysis of 16 genes, including deletion/duplication analysis of CYP2D6, reported as impact of gene-drug interaction for each drug
0411U	Psychiatry (e.g., depression, anxiety, attention deficit hyperactivity disorder [ADHD]), genomic analysis panel, variant analysis of 15 genes, including deletion/duplication analysis of CYP2D6
0419U	Neuropsychiatry (e.g., depression, anxiety), genomic sequence analysis panel, variant analysis of 13 genes, saliva or buccal swab, report of each gene phenotype
0423U	Psychiatry (e.g., depression, anxiety), genomic analysis panel, including variant analysis of 26 genes, buccal swab, report including metabolizer status and risk of drug toxicity by condition
0434U	Drug metabolism (adverse drug reactions and drug response), genomic analysis panel, variant analysis of 25 genes with reported phenotypes
0438U	Drug metabolism (adverse drug reactions and drug response), buccal specimen, gene-drug interactions, variant analysis of 33 genes, including deletion/duplication analysis of CYP2D6, including reported phenotypes and impacted gene-drug interactions
0456U	Autoimmune (rheumatoid arthritis), next-generation sequencing (NGS), gene expression testing of 19 genes, whole blood, with analysis of anti-cyclic citrullinated peptides (CCP) levels, combined with sex, patient global assessment, and body mass index (BMI), algorithm reported as a score that predicts nonresponse to tumor necrosis factor inhibitor (TNFi) therapy
0460U	Oncology, whole blood or buccal, DNA single-nucleotide polymorphism (SNP) genotyping by real-time PCR of 24 genes, with variant analysis and reported phenotypes
0461U	Oncology, pharmacogenomic analysis of single-nucleotide polymorphism (SNP) genotyping by real-time PCR of 24 genes, whole blood or buccal swab, with variant analysis, including impacted genedrug interactions and reported phenotypes
81418	Drug metabolism (e.g., pharmacogenomics) genomic sequence analysis panel, must include testing of at least 6 genes, including CYP2C19, CYP2D6, and CYP2D6 duplication/deletion analysis
81479	Unlisted molecular pathology procedure

CPT® is a registered trademark of the American Medical Association

Description of Services

Pharmacogenetics (also called pharmacogenomics) studies how variation in genes impacts the way an individual may respond to certain medications. Differences in genes can account for the reasons why some individuals benefit from a specific medication while others may not. These differences can also influence the side effects some individuals suffer from a medication, while other individuals have none. (MedlinePlus, 2023)

A pharmacogenetic test is meant to guide treatment strategies, patient evaluations and decisions based on its ability to predict response to treatment in particular clinical contexts. When testing is targeted to evaluate an individual's response to a specific drug, typically only one gene is analyzed. For warfarin, also known as Coumadin, two to three genes are tested. However, laboratories have developed Multi-Gene Panels including five or more genes in order to proactively evaluate an individual's possible response to many drugs. This policy is designed to address Multi-Gene Panel testing.

Clinical Evidence

Anxiety and Depression

Up to 42% of variance in therapy response for major depressive disorders (MDD) can be explained by genetic variation (Tansey et al., 2013), which has led to the development of pharmacogenetic (PGx) tests to inform the use of certain psychiatric medications. Prospective randomized clinical trials have been performed to validate the clinical validity and utility of a number of PGx multi-gene panels.

In a 2023 systematic review and meta-analysis of randomized controlled trials (RCT), Wang et al. investigated the impact of using pharmacogenetic testing to guide treatment on clinical outcomes of individuals with major depressive disorder (MDD). A total of eleven studies including 5,347 participants were included in the evaluation. Various marketed tests with differing numbers of genes were used in the studies. The authors note that most of the studies were considered to have a high risk of bias as they were funded by the industry. The group of individuals whose treatment was guided by pharmacogenomic testing was associated with increased response rate at week eight (OR 1.32, 95%CI 1.15–1.53, eight studies, 4328 participants) and week 12 (OR 1.36, 95%Cl 1.15-1.62, four studies, 2814 participants) when compared with the usual treatment group. In addition, the group with pharmacogenomically guided treatment had an association with increased remission rates at week eight (OR 1.58, 95%Cl 1.31–1.92, eight studies, 3971 participants) and week 12 (OR 2.23, 95%CI 1.23-4.04, five studies, 2664 participants). However, no significant differences in either response rate or remission rate were found between the two groups at week four or week 24. The meta-analysis also found that medication congruence in 30 days showed a significant reduction in the pharmacogenomic testing group versus the usual care group (OR 2.07, 95%CI 1.69-2.54, three studies, 2862 participants). Subgroup analysis revealed a significant difference between the Asian subgroup and the Caucasian subgroup, possibly due to the sub-genotype of allele frequencies of gene variants. The authors concluded that in all, the results of this analysis indicate that pharmacogenomically guided treatment led to faster clinical remission or response in individuals with MDD but resulted in no difference in final response or remission at the end of the pharmacogenomically guided treatment. These results differ from those of previous metaanalyses, which showed overall higher response/remission rates in individuals with MDD who underwent pharmacogenomically guided treatment compared to those who underwent usual treatment. The researchers speculate that the lack of significant changes at week four may be due to the long onset time of anti-depressants and the lack of significant changes at week 24 may be due to the pharmacogenomic testing showing an accelerated process of excluding unsuitable anti-depressants for individuals with MDD. Ongoing, high-quality studies are recommended to continue assessment of the benefits of pharmacogenomic testing, especially across differing populations and ethnic groups. (Study by Perlis et al. [2018], previous discussed in this policy, was included this systematic review.)

Noting the limited evidence supporting the clinical benefit of pharmacogenomics-informed treatment (PIT) with antidepressants, (specifically tricyclic antidepressants [TCA]), Vos et al. (2023) conducted an RCT designed to ascertain whether PIT leads to faster therapeutic TCA plasma concentrations, when compared with usual treatment, for individuals with MDD. Because treatment with TCAs is often associated with adverse effects, identification of optimal dosing can be time consuming, and therapeutic plasma concentrations are well defined, PIT is of special interest in this class of medication. The study took place in the Netherlands and enrolled 111 individuals with unipolar, nonpsychotic MDD. Participants age ranged from 18 to 65 years and all were eligible for treatment with TCA. Medications use to treat included nortriptyline, clomipramine, or imipramine. In the group receiving PIT (n = 56), initial dose of TCA was based on *CYP2D6* and *CYP2C19* genotypes. The control group (n = 55) was provided with usual treatment including standard initial TCA dosages. Days to attainment of therapeutic TCA plasma concentration was the primary outcome with secondary outcomes that included the severity of depressive symptoms (as measured by the 17-item Hamilton Rating Scale for Depression [HAMD-17]) and the frequency and severity of adverse side effects. In the group receiving PIT, therapeutic concentrations were reached more quickly than in the control group (mean [SD], 17.3 [11.2] vs 22.0 [10.2] days; Kaplan-

Meier χ 21 = 4.30; p = .04), but no significant difference in the reduction of depressive symptoms was captured. The interaction between group and time differed for frequency, severity and burden of adverse effects via linear mixed-model analysis, which may suggest that adverse effects had a relative decrease for individuals receiving PIT. Overall the researchers assert that the results of this trial show pharmacogenomics-informed dosing of TCAs is safe and may be helpful in personalizing treatment for individuals with MDD.

In an RCT including 1,944 individuals with MDD, Oslin et al. (2022) the impact of pharmacogenomic testing for drug-gene interactions on selection of anti-depressant medications and response of depression symptoms, compared to usual care. Eligible participants had MDD and were starting therapy or switching therapy including a single antidepressant. Individuals with active substance disorders, mania, psychosis or concurrent treatment with other specified medications were excluded. In the pharmacogenomic-guided group (n = 966), results from a commercial pharmacogenomic test (GeneSight, Myriad Genetics) were provided to clinicians overseeing the care for that group. The comparison group (n = 978) received usual care (access to pharmacogenomic results were provided after 24 weeks). Outcomes included the proportion of prescriptions with predicted drug-gene interactions written within 30 days of randomization and remission of the symptoms of depression as assessed by the Patient Health Questionnaire-9 (PHQ-9). Assessment of outcomes were performed at week 4, 8, 12, 18 and 24 by raters who were blinded to clinical care and study randomization. Of the 1,944 participants randomized, 79% completed the full 24-week evaluation. Estimated risk of receiving an antidepressant with none, moderate, or substantial drug-gene interactions for the group whose care was guided by pharmacogenetic testing results were 59.3%, 30.0%, and 10.7%, respectively. In the usual care group, risk was determined to be 25.7%, 54.6%, and 19.7%. Prescriptions with no predicted drug-gene interaction were provided for 45% of individuals in the pharmacogenomically guided group compared with 18% of individuals in the usual care group; a statistically significant difference. Overall, rates of remission over the course of 24 weeks were higher in individuals whose care was directed with pharmacogenomic testing than those receiving usual care (OR, 1.28 [95% CI, 1.05 to 1.57]; p = .02; risk difference, 2.8% [95% CI, 0.6% to 5.1%]). However, remission rates were not significantly higher in the pharmacogenomically guided group at 24 weeks. The authors concluded that for individuals with MDD, offering pharmacogenomic testing for drug-gene interactions decreased prescriptions of medications with predicted drug-gene interactions when compared to usual care. Use of test results had small positive impacts on symptom remission (especially early in the trial) that did not persist at 24 weeks. (This study was included in the Wang, 2023 systematic review discussed above.)

In a 2021 (updated 2022) Molecular Test Assessment, Hayes evaluated the GeneSight Psychotropic test. GeneSight is a pharmacogenomic gene panel test that assesses the interaction between genes and certain drugs for the purpose of aiding health care providers in decision-making for treatment of individuals with mental health conditions. Hayes found no peer-reviewed studies addressing analytical or clinical validity but did reference four studies (none of which included the current, 15-gene configuration of the test) reporting on the GUIDED trial. Overall, Hayes found insufficient evidence supporting the use of GeneSight for mental health disorders at this time.

An Ontario Health Technology Assessment (2021), which included a systematic review of the literature, evaluated the safety, effectiveness and cost-effectiveness of multi-gene pharmacogenomic tests designed with decision-support tools to aid in treatment of individuals with MDD. Fourteen studies, including evaluation of six multi-gene pharmacogenomic tests (GeneSight, NeuroIDgenetix, CNSdose, Neuropharmagen, Genecept and one unspecified test), were reviewed. Heterogeneity of available multi-gene pharmacogenomic tests as well as study design, populations included and outcomes reported were noted. Effectiveness of the six tests evaluated was inconsistent; clinical utility of one test may not apply to the others. Little to no differences were found in score changes on the HAMD-17 in individuals who underwent pharmacogenomic testing compared to those who were treated with usual care; however some of the tests showed promising results in terms of response to treatment or remission from their symptoms.

In a Canadian participant- and rater- blinded RCT, Tiwari et al. (2022 included Wang, 2023, above) evaluated clinical outcomes for patients with a diagnosis of depression whose treatment was guided by combinatorial pharmacogenomic testing (GeneSight® Psychotropic or Enhanced GeneSight® Psychotropic) as compared to treatment-as-usual (TAU). The GAPP-MDD RCT was a 3-arm, 52-week, multi-center trial primarily evaluating symptom improvement using the (HAM-D17) at week 8, as well as secondary outcomes including response (≥ 50% decrease in HAM-D17) and remission (HAM-D17) at week eight. The participants were randomized 1:1:1 to one of three treatment arms, including two intervention arms and a TAU arm. For the first intervention arm (n = 147), the providers received the standard combinatorial pharmacogenomic test report to guide treatment (GEN arm). The second intervention arm included participants (n = 152) for whom the providers received an enhanced test report to guide treatment (EGEN − 6 additional genes) and the final arm was TAU (n = 138). The researchers found that individuals in the pharmacogenomically guided groups had greater symptom improvement (27.6% versus 22.7%), response (30.3% versus 22.7%) and remission rates (15.7% versus 8.3%) compared to TAU, but the differences found were not statistically significant. Since they felt that this trial was underpowered to detect statistically meaningful differences in outcomes, the authors did a parallel assessment with the U.S. "GUIDED" trial results (discussed in Greden et al., 2019, below). They found consistent results related to relative

improvements in response and remission rates between GAPP-MDD (33.0% response, 89% remission) and GUIDED (31.0% response, 51.0% remission) and concluded that in the context of the Canadian universal healthcare setting, GAPP-MDD and GUIDED RCTs support the use of combinatorial pharmacogenomic testing as an effective tool to help quide treatment of depression.

A systematic review to summarize and assess the state of evidence regarding the use of PGx testing in individuals with depression was performed by Aboelbaha et al in 2021. The researchers queried scientific databases from inception through June 30, 2020, for RCTs and systematic reviews which assessed clinical utility of PGx testing for treatment of depression. A total of six systematic reviews and three RCTs ultimately met criteria for inclusion in this study. The results provided evidence on efficacy of PGx testing, with newer RCTs of better quality showing clinical promise regarding efficacy outcomes, especially in participants with gene-drug interactions. The researchers state that PGx testing before initiation of treatment or during therapy may improve efficacy outcome and recommend further studies to assess impact of PGx testing on safety outcomes. (Authors Brown et al. [2020], Bousman et al. [2019] and Rosenblat et al. [2018], previously discussed in this policy, were included in the Aboelbaha systematic review.)

Menchónet al. (2019) examined the influence of patient characteristics such as age, baseline severity, and duration of episode on the clinical utility of PGx testing for psychiatric drugs from the AB-GEN study, a randomized 12-week long study comparing TAU to PGx guided therapy selection in 280 adults with MDD. The primary outcomes analyzed were the Patient Global Impression of Improvement (PGI-I) scale and the (HAM-D17). Patients generally showed no difference in sustained response at the 12-week end point between the TAU and PGx group (Pérez, et al., 2017). However, the PGx group had a higher response rate than TAU, and when subjects were removed whose physicians did not follow the genetic testing recommendations, the response rate improved further. Side effects were less in the PGx group by 6 weeks, which was maintained at week 12. The primary dependent variable identified was the number of previously failed medication trials. In the Menchónet al. reanalysis by patient demographics, additional important variables were identified. Age was important as PGx testing significantly improved outcomes in those under age 60, but not over age 60. Outcomes were also improved in those with moderate to severe depression, but not in those with mild depression. Genetic testing improved PGI-I in one year or less from diagnosis, but not HAM-D17. The effect on HAM-D17 was not significant until the cutoff from time of diagnosis was increased to 5 years. After this, however, a null effect was seen, and individuals who were more than 5 years from their diagnosis were actually worse off in the PGx arm than TAU. To determine which type of patient is most likely to benefit from PGx testing for psychiatric therapies, more prospective, randomized trials are needed.

GUIDED is a 24-week RCT conducted between April 2014 and February 2017 comparing active treatment groups guided by PGx information, to active treatment groups receiving usual care (TAU) for MDD (Greden et al., 2019, included in the Wang, 2023 systematic review discussed above and the Hayes 2021 GeneSight Psychotropic Molecular Test Assessment). Sixty sites participated, and patients were referred to the study when it was self- or clinician reported to have inadequate response to at least one antidepressant. The average number of medications failed in the cohort was three, making this a difficult to treat population. Genotyping was for eight genes, CYP1A2, CYP2C9, CYP2C19, CYP3A4, CYP2B6, CYP2D6, HTR2A, and SLC6A4 and results were evaluated and reported using a proprietary PGx algorithm from Assurex Health. Participants were blinded to the study arm but clinicians were not, since they needed to consult the PGx results to guide treatment. Using the results to guide treatment was not mandated. Patients were assessed at 4, 8, 12 and 24 weeks using the HAM-D17, which was administered by blinded raters. A total of 1167 enrolled patients made it through week 8 with 607 in TAU and 560 in PGx guided. HAM-D17 scores decreased in the TAU arm by 24% and in the PGx arm by 27%, but the difference was not statistically significant. Treatment response, defined as ≥ 50% decrease in depression, was greater in the PGx arm (26%) than TAU (20%). The depression remission rate, defined as score of ≤ 7 for HAM-D17, was 10% with TAW and 15% with PGx (p = .007). Additionally, at week 8, there was no difference between the groups in reported side effects. When patients taking incongruent medications were evaluated as a separate cohort, those who switched to congruent medications by week 8 experienced significantly fewer side effects. Medication prescriptions that aligned with PGx results at baseline were 77% in the TAU group and 79% in the PGx group. By week 8, the PGx group increased to 91%, and the TAU group was unchanged. After 8 weeks, clinicians in the TAU arm were unblinded and could use the PGx results if they chose. A total of 913 participants completed through week 24 with 456 in TAU and 457 in the PGx guided arm. Overall, in the PGx group, HAM-D17 scores decreased by 43% at week 24 relative to baseline. Response and remission increased by 70% and 100%, respectively, from week 8 to week 24. While the primary outcome being analyzed, symptom improvement at week 8, was not different between the two groups, there was significant difference in response and remission in the PGx group on other measures.

A panel of ten genes with select polymorphisms combined with a proprietary algorithm, the NeurolDgenetix® Test, was the subject of a RCT to evaluate clinical utility for guiding treatment for depression and anxiety (Bradley et al., 2018, included in Wang, 2023 systematic review above). Genes included *CYP1A2*, *CYP2C9*, *CYP2C19*, *CYP2D6*, *CYP3A4*, *CYP3A5*, *SLC6A4*, *COMT*, *HTR2A*, and *MTHFR*. Participants were identified from 20 independent clinical sites in the US that represented psychiatry, internal medicine, family medicine, and obstetrics and gynecology. A total of 685 patients were

included in the study, ranging in age from 19 to 87, and all had a diagnosis of depression or anxiety using the DSM-V criteria and verified by the MINI Psychiatric Interview. Most were female (73%) with diagnoses of depression (n = 246), anxiety (n = 235) or both (n = 204) Participants were either 'New to Treatment' (newly diagnosed or taking medications for less than 6 weeks) or 'Inadequately Controlled' with medications as defined by lack of efficacy or treatment discontinuation due to adverse events or intolerability; although the authors did not report the distribution. PGx testing was performed in all subjects but was only shared with the physicians of those in the PGx arm. Patients were assessed at 4, 8 and 12 weeks using the HAM-D17 and the Hamilton Rating Scale for Anxiety (HAM-A), with their physicians blinded to the results. Adverse events were captured via the Adverse Drug Event form developed by external psychiatric consultants, and a blinded clinician ranked the adverse events on a severity scale. The PGx testing group showed a greater response and remission rate with odds ratios of 4.72 and 3.54 respectively, than the TAU group at 12 weeks. In the anxiety group, those that received testing had a higher response rate at 8 and 12 weeks with an odds ratio of 1.76, compared to the TAU group. Physicians made at least one medication change in 81% of those receiving testing than the control group (64%) at the two-week time point when results were returned to physicians. No difference was found in adverse drug events between the two treatment groups. In a post-hoc analysis on the 'Inadequately Controlled' cohort remission rates (42% vs. 27%, p = 0.03) and response rates (62% vs. 44%, p = 0.01) response rates were greater with PGx than TAU.

Jung et al. (2017) conducted a genome-wide association study (GWAS) in Generalized Anxiety Disorder (GAD) to identify potential predictors of venlafaxine XR treatment outcome. Ninety-eight European American patients participated in a venlafaxine XR clinical trial for GAD, with HAM-A response/remission at 24 weeks as the primary outcome measure. All participants were genotyped with the Illumina PsychChip, and 266,820 common single nucleotide polymorphisms (SNPs) were analyzed. Although no SNPs reached genome-wide significance, eight SNPs were marginally associated with treatment response/remission and HAM-A reduction at week 12 and 24 (p < 0.00001). The authors concluded that several identified genes may indicate markers crossing neuropsychiatric diagnostic categories. The authors acknowledged that the limitations of this study include small sample size and the lack of statistical power for a GWAS. Areas for future research include the replication of results with larger samples sizes to increase statistical power and further elucidate the treatment effects of antidepressant venlafaxine XR on GAD.

Researchers enrolled 528 (outpatients and inpatients) from 18 hospitals and associated mental health centers in Spain from July 2014 to June 2015 in the AB-GEN study, a 12-week, double-blind, parallel, multi-center RCT to evaluate the effectiveness of PGx testing for drug therapy guidance for MDD. Individuals with a CGI-S ≥ 4 and requiring antidepressant medication de novo or changes in their medication were randomized to a PGx or TAU group. PGx testing was conducted by Neuropharmagen, and results were reported using their web-based clinical decision support tool. Thirty genes and relevant single nucleotide polymorphisms were analyzed. The primary endpoint was measuring a sustained response on the Patient Global Impression of Improvement (PGI-I) of ≤ 2 within the 12-week follow-up. Follow up was conducted by phone, and the interviewer was blinded to the participant's study arm. A patient was considered to have a sustained response with a PGI-I score of 2 or less if they reported their condition to be "much better" or "very much better." Only 280 of 528 patients completed the study. A difference in sustained response was not observed between PGx and TAU at 12 weeks. Overall, the PGx group had a much higher response rate, and this improved when removing the patients whose physicians did not follow the PGx recommendations. Effects were greatest in patients who had failed up to three prior medications. Of those who reported side effects at baseline, the PGx group was more likely to report fewer side effects than the TAU group (Pérez et al., 2017). This study is interesting as it uses real world practices and clinicians, a heterogeneous population with variable disease states and prior treatment failures, and clinicians could choose to not follow the PGx recommendations. Additional studies are needed to replicate these findings across larger, ethnically diverse study groups.

Cardiovascular Disease

The evidence regarding use of multigene PGx testing for cardiac disease is limited at this time. High-quality studies demonstrating improved outcomes related to use of PGx testing in individuals with cardiac conditions and/or undergoing cardiac interventions are required.

Ratner et al. (2022) explored the impact of multigene PGx testing on individuals undergoing percutaneous coronary intervention (PCI) and bone marrow transplant. Frequency of prescription for 65 medications with actionable PGx recommendations were obtained for all participants and a simulation was used to then project the number of opportunities for PGx-guided prescribing. In the PCI group (215 individuals), 66.5% of participants were prescribed at least one medication that had actionable PGx prescribing recommendations available. Using the simulations, if multigene PGx were available, 26.5 prescribing opportunities per 100 individuals undergoing PCI were projected. The authors indicated their belief that multigene PGx testing may offer potential to improve medication prescribing in individuals undergoing PCI. However, additional high-quality studies are needed to further investigate the role of PGx testing for individuals undergoing PCI.

Two hundred and eleven patients from the University of Florida (UF) who underwent percutaneous coronary intervention (PCI) were included in a study to analyze the benefits of genotype-guided prescribing of PGx drugs and examine the clinical utility of multigene panel testing. Genotype data for five genes (CYP2C19, CYP2D6, CYP2C9, VKORC1, SLCO1B1) was compiled from this cohort. Seventy-seven percent of UF patients exhibited at least one actionable phenotype for these five genes; 32% had opportunities for genotype-guided prescribing of medications. The data was then used as parameter estimates in a simulation model to predict genotype-guided opportunities among privately insured beneficiaries in the MarketScan database who had undergone PCI with at least one and five years of follow-up data (n = 105,547 and n = 12,462, respectively). Fifty percent of the individuals who had undergone PCI with over one year and 68% with over five years of follow-up were taking at least one CPIC A/B drug in addition to prescribed antiplatelet therapy. A 39% and 52% incidence of genotype-guided prescribing opportunity at one and five years, respectively, was projected. The authors hypothesized that panel-based testing at the time of PCI could result in genotype-driven prescribing decisions in 1/3 of patients, thereby improving therapy outcomes beyond that of CYP2C19 alone for antiplatelet therapy. (Rouby et al., 2020)

The real-world clinical utility of PGx testing for managing cardiovascular disease was studied by Billings et al. (2018). A retrospective cohort of individuals was identified through pharmaceutical, medical and laboratory claims data from a national health insurer from January 2011 through September 2015. Baseline data and outcomes were measured over a 12-month period. Individuals who received PGx testing that included CYP2C19, CYP2C9, VKORC1, F5, F2, and MTHFR were matched to controls based on demographics and diagnoses. PGx testing was ordered at the physician's discretion and was not influenced by the study. The total number of individuals tested was 11,060 and 178,096 matched controls were identified. Outcomes evaluated through claims data included pharmacy costs, medical costs, emergency room visits, outpatient visits, emergency room stays, controlling for demographics, coverage type, low income, cardiovascular disease, and other co-morbidities, such as diabetes. The PGx test group appeared significantly more likely to experience stroke, pulmonary embolism, deep vein thrombosis, or a composite event than the control group. Real world PGx testing did not appear to improve outcomes based on claims analysis.

Anthracyclines

The routine use of PGx panel testing in assessment of risk related to chemotherapy-induced cardiotoxicity (CIC) is not supported by the evidence at this time. Although the initial research shows promise for potential benefit, additional prospective studies with long-term follow-up are needed for validation of the role of PGx related to CIC.

Yang et. al. (2021) conducted a systematic review and meta-analysis to examine the correlation between genomic variants and CIC. The review and analysis included forty-one studies examining the relationship between genetic variants and CIC, including 88 unique genes and 154 single nucleotide polymorphisms (SNPs). The results revealed that six variants had an association with increased risk of CIC, including CYBA rs4673, RAC2 rs13058338, CYP3A5 rs776746, ABCC1 rs45511401, ABCC2 rs8187710, and HER2-Ile655Val rs1136201. The authors concluded that this study revealed promising potential benefits of pharmacogenomic testing prior to chemotherapy to minimize the risk of CIC, however further studies are required to validate the prognostic and diagnostic roles of the six identified variants in predicting CIC.

Anthracyclines are an important category of chemotherapeutic agents for hematological and solid tumors but are associated with a high rate of anthracycline associated cardiotoxicity (ACT) that can result in symptoms during therapy or even years after therapy is completed. Sági et al. (2018, included in the Yang systematic review discussed above) conducted genotyping of 26 genes and 70 single nucleotide polymorphisms (SNPs) associated with anthracycline metabolism and retrospective review of medical records of 622 pediatric acute lymphoblastic leukemia (ALL) and 39 osteosarcoma (OSC) patients treated between 1989 and 2015 in Hungarian pediatric oncology centers. Patients with comorbidities such as Down syndrome or prior cardiac findings were excluded. Blood samples were taken on ALL patients in remission. All patients were followed by echocardiography routinely during and after treatment, and retrospective chart review examined the following categories; at baseline (used as a control), in the acute phase, during oral maintenance, at the end of treatment, 2-3 post diagnosis, 5-10 years after diagnosis, and 10-15 years post diagnosis. SNPs in ABCC2, NQO1, SLC22A6, and SLC28A3 were associated with decreased fractional shortening and ejection fraction, particularly in the 5-10-year period after diagnosis. NQO1 SNP rs1043470 T was associated with lower left ventricular function in the acute phase and 5-10 years post diagnosis. CYP3A5 rs4646450 TT was found in 17% of ALL individuals with anthracycline associated cardiotoxicity (ACT) with a fractional shortening less than 28, and appeared to be more prominent in ACT overall, particularly in boys and the ALL group. Additional studies are needed that are prospective with long term follow up to further understand how PGx testing can contribute to understanding ACT.

Pain Management

Although the evidence for use of PGx panel testing related to pain management is evolving, the use of multi-gene panel testing for predicting response, side effects, dependence or improving overall treatment outcomes is currently not supported as safe or efficacious by the peer-reviewed, published literature.

Agulló et al. (2023) conducted a double-blind, randomized, controlled study to assess the safety and effectiveness of pharmacogenomic-guided opioid therapy by examining clinical changes in individuals with chronic non-cancer pain (CNCP) after 3 months of treatment with opioid analgesics. CPIC clinical recommendations for CYP2D6 phenotypes and OPRM1 and COMT genotypes were the basis for the pharmacogenomic-guided treatment employed in this study. The trial randomized 60 participants with chronic pain into two arms, both of which were prescribed opioids. The first was quided by CYP2D6, OPRM1 and COMT genotypes and the other received routine care. Participants were interviewed in a baseline visit to assess physical status and medical history. Over the course of the 3-month trial, 10 participants were excluded for various reasons; a total of 50 participants completed the full 3-month trial and follow up. Data was collected with validated scales and questionnaires which were self-administered in the presence of an expert clinician. In the group guided by genotype, pain was reduced in intensity (76 vs. 59 mm, p < 0.01), pain relief was improved (28 vs. 48 mm, p < 0.05), quality of life was improved (43 vs. 56 mm p < 0.001), incidence of clinically relevant adverse effects was reduced s (3 [1-5] vs. 1 [0-2], p < 0.01) and opioid dose was reduced by 42% (35 [22-61] vs. 60 [40-80] mg/day, p < 0.05) when compared to the usual prescribing group. The score for health utility was significantly higher in the genotype-guided group due to improving symptoms of sleepiness and depression and a substantial reduction (30-34%) for headaches, nervousness, dry mouth, and constipation. The authors propose that these results support safety and efficacy of the use of genotype-guided CNCP opioid use for both pain and associated psychiatric disorder management. However, the study was limited by its small sample size from a single pain unit during the COVID-19 pandemic. In addition, the opioid fentanyl was only used in the control arm, creating difficulty in evaluating specific effects of guided treatment when there are differences in the drugs between groups. Lastly, participants were on other medications for additional pathologies which could have contributed to the differences in outcomes. Additional high-quality studies with larger and more diverse populations are recommended.

In a systematic 2022 review, Zobdeh et al. examined the impact of PGx on safety and efficacy of non-steroidal anti-inflammatory drugs (NSAIDs) and antidepressants when they are used for treatment of pain. A total of 25 articles met inclusion criteria and were reviewed in the analysis. Interactions applicable for use in pain management were detected for 10 drug/gene combinations including ibuprofen/CYP2C9, celecoxib/CYP2C, piroxicam/CYP2C8, CYP2C9, diclofenac/CYP2C9, UGT2B7, CYP2C8, ABCC2, meloxicam/CYP2C9, aspirin/CYP2C9, SLCO1B1, and CHST2, amitriptyline/CYP2D6 and CYP2C19, imipramine/CYP2C19, nortriptyline/CYP2C19, CYP2D6, ABCB1, and escitalopram/HTR2C, CYP2C19, and CYP1A2. The authors note that the PGx studies identified focused on the role of genes in the CYP family for NSAIDs, but the number of studies that investigated the impact of these variants on pain relief are very limited and detected only small impact of CYP2C8 and CYP2C9 on therapeutic effect. Overall, there is a lack of well powered studies investigating PGx in individuals being treated for pain with NSAIDs and antidepressants. Although a higher risk for more severe side effects for CYP2C9 poor metabolizers and NSAIDs was observed, the researchers concluded that larger in vivo studies are required to further investigate the efficacy regarding use of PGx of NSAIDs and antidepressants in pain management.

To determine whether PGx testing may be used to effectively customize postoperative pain management after a total joint replacement, Hamilton et al. (2022) conducted a prospective RCT including 107 individuals undergoing hip or knee arthroplasty. PGx testing was performed using a panel of 16 genes including CYP2D6, CYP2C9, OPRM1, and CYP1A2. which have an impact on pharmacodynamics of NSAIDs and many opioids. Participants were blinded and randomized to either a control group (n = 46) or custom group (n = 61). The control group received prescriptions for oxycodone, tramadol and celecoxib for their postoperative pain. In the custom group, if variants indicating these drugs would not be normally metabolized were found via PGx testing, alternative drugs (hydromorphone, meloxicam) were prescribed. Participants recorded pain levels and medications used for 10 days following surgery and medication used was converted to milligram morphine equivalents (MME). The researchers found that genetic variations to medications in the standard pain management protocol occurred in 22.4% of participants. The 10-day MME in the control group for those individuals who had genetic variants was 162.6 mg. In the custom group, individuals with variants and custom medications used only 86.7 mg in the same timeframe. The control group also had a higher 10-day average pain level than the custom group (4.2 vs. 3.1, respectively, p < 0.05). The authors concluded that with custom postoperative pain medication prescriptions based on results of PGx testing, individuals undergoing hip or knee arthroplasty had better pain control and reduced consumption of pain medication, however they acknowledge that this study was small, especially since the genetic variations of greatest interest are rare.

In a 2021 systematic review, Rodriguez et al. examined the efficacy and safety of opioid therapy guided by PGx testing. Out of 3,794 records found, five met inclusion criteria for data extraction. Of the five studies, two reported significant pain

improvement related to PGx-guided therapy in individuals with a high risk CYP2D6 phenotype. The authors concluded that evidence on the safety and efficacy of using PGx testing to guide intervention in opioid therapy for chronic and postoperative pain is very limited.

In 2020 (updated 2023), Hayes published a Clinical Utility Evaluation of pharmacogenetic and pharmacogenomic testing related to opioid use disorders. Hayes found insufficient evidence to either predict risk of opioid dependence or improve treatment for patients with opioid use disorder. In addition, a Hayes Clinical Utility Evaluation (2019a, updated 2021) found limited, low-quality evidence regarding pharmacogenetic and pharmacogenomic testing prior to prescribing codeine, tramadol, and general opioids with respect to improved opioid related treatment outcomes in adult patients with pain. Lastly, another Hayes Clinical Utility Evaluation (2019b updated 2022) found insufficient evidence to report or refute the clinical utility of OPRM1 or COMT genotyping for pain management in patients with organic causes of pain.

Muriel et al. (2019) conducted a six-month, observational, prospective study on the use of PGx testing for 88 patients involved in long term opioid deprescription treatment of non-cancer related pain in the Pain Unit of Alicante General Hospital in Spain. Visits were monitored and analyzed based on various genotypes. Visits included baseline, follow-up and final, and other parameters tracked were opioid rotation or discontinuation, adverse drug events and suspected adverse drug reactions (ADRs). Genotyping consisted of the following genes and variants using RT-PCR: OPRM1 (A118G), ABCB1 (C3435T), COMT (G472A), OPRD1 (T921C) and ARRB2 (C8622T). Five patients were lost to follow up. The remaining participants were 64% female and 100% Caucasian. In the baseline visit, a median of 6 adverse events were recorded including dry mouth, constipation, sleep disruption, and depression. There was no difference recorded in ADRs from baseline through final visits. A total of 1659 ADRs were reported in 359 visits for this cohort, and the most common by system classification were psychiatric (21%) and gastrointestinal (20%). At the baseline visit, ADRs varied between OPRM1 genotypes, with individuals who were AA at that A118G locus having, on average, two or more ADRs than AG/GG patients. Nausea and other gastrointestinal ADRs followed this same pattern. COMT genotyping was similar; with AA/GG patients have more ADRs, and those that were COMT AG were less likely to have loss of libido, skin redness, vomiting, or sexual dysfunction. The OPRD-CT genotype also showed less association with sexual dysfunction and reproductive system disorders. The authors were surprised that the number of ADRs did not change over the course of the study, and they also noted that the use of antidepressants increased from the beginning to end of the study. Antidepressants can have similar ADRs to opioids; this may be a confounding variable. The authors found value in the PGx testing as a predictor of who may experience nausea and gastrointestinal discomfort and highlights the potential promising use of PGx in opioid management.

Rheumatoid Arthritis

The body of evidence supporting the PrismRA® test is limited. For this test to be considered proven with clinical utility, additional larger and independent studies with better study designs are necessary.

Anti-tumor necrosis factor (TNF) medications are the first tier of rheumatoid arthritis (RA) treatment therapy in over 90% of biologic naïve patients whose disease is not controlled by conventional disease modifying anti-rheumatic drugs (DMARDs); 70% of these RA patients do not attain significant clinical improvement (Mellors et al. 2020). Scipher Medicine created PrismRA® as a molecular signature test that evaluates the likelihood that an RA patient may not respond to traditional anti-TNF therapy before treatment is initiated. Twenty-three different assessments are made by PrismRA®; the resulting biomarker panel includes 19 gene expression features, anti-cyclic citrullinated protein (anti-CCP) and 3 clinical metrics (sex, body mass index, patient disease assessment) which stratify patients based on the likelihood of inadequate response to anti-TNF therapies. Scipher predicts that a 40% increase in response to the first targeted DMARD could have been achieved for RA patients using PrismRA® and that both responders and non-responders have a greater chance of responding to their first biologic/targeted treatment. (Mellors et al. 2020)

A Hayes Molecular Test Assessment (2022b, updated 2023) evaluated the clinical validity, utility and analytic validity of Scipher's PrismRA test, noting that the test has undergone changes in the number of risk categories and cutoff values for classification. This Hayes Assessment addresses the PrismRA test in its most current form and previously published analyses of PrismRA which did not evaluate the most current version of the test (or in which the version of the test could not be identified) were excluded from the Hayes assessment. Overall, a very low-quality body of evidence was identified to support use of the PrismRA test. Additional studies evaluating PrismRA in larger and more diverse populations are needed.

In a 2022 cohort study, Curtis et al. (included in the Hayes 2022b Molecular Test Assessment) compared a group of individuals (n = 627) who had been tested for a molecular signature response classifier (MSRC) with a control group using propensity score matching applied to balance baseline traits. The individuals in the MSRC-tested group were participants in the Study to Accelerate Information of Molecular Signatures (AIMS), while the control group (n = 2,721) was external; information was obtained from a large, de-identified database of US electronic health records. All participants either began

a biologic/targeted synthetic disease-modifying antirheumatic agent or continued anti-TNF therapy. The researchers calculated odds ratios (ORs) for six—month response based on clinical disease activity index (CDAI) scores for low disease activity/remission (CDAI-LDA/REM), remission (CDAI-REM) and minimally important differences (CDAI-MID). In the group of MSRC-tested participants, a non-response signature was obtained in 59% of the group and MSCR-aligned treatment was provided in 70% of the group. In participants who were treated with anti-TNF therapy, the MSRC had a PPV of 88% and sensitivity of 54% Those individuals who received MSRC-guided treatment were significantly more likely to respond to biologic and targeted synthetic disease-modifying antirheumatic drugs (b/tsDMARDs) than individuals who received standard care (CDAI-LDA/REM: 36.0% vs 21.9%, OR 2.01[1.55-2.60]; CDAI-REM: 10.4% vs 3.6%, OR 3.14 [1.94-5.08]; CDAI-MID: 49.5% vs 32.8%, OR 2.01[1.58-2.55]). Based on these results, the authors assert that the clinical validity of the MSCR test supports high clinical utility since treatment that was guided by MSCR testing led to substantially better outcomes compared to standard care with almost three times more individuals reaching CDAI remission. Some limitations were noted, however, including the intrinsic limitations in the ability to identify unmeasured confounders in an external control group and the length of time that passed from the baseline assessment and MSRC testing to the beginning of treatment in some members of the MSRC-tested group (up to one year). In addition, several authors had associations with the corporation that manufacturers the MSRC test used and funded the study, which creates potential for bias.

Jones et al. (2021, included in the 2022b Hayes report) conducted a nonrandomized retrospective assay to assess the analytical and clinical validity of the PrismRA test in individuals with RA who have not responded to tumor necrosis factor- a inhibitor (TNFi) therapy. A total of 174 individual samples from the NETWORK-004 clinical study were analyzed for clinical validity. Of these, 100 were had not undergone any targeted RA therapy and 74 had been exposed to TNFi. The test results classified samples according to non-response prediction with a positive predictive value of 87.7% (95% CI: 78–94%), sensitivity of 60.2% (95% CI: 50–69%), and specificity of 77.3% (95% CI: 65–87%). Three thresholds were used: signal not detected, high, and very high. Accuracy of the test under study was found to be 95.8% for threshold concordance; high repeatability was detected (92.6%) as well as high reproducibility (100%). The authors concluded that PrismRA is a "robust assay" that detects molecular non-response signatures in individuals with RA accurately and reproducibly. Limitations to this study include lack of randomization, small population, wide confidence intervals and inability to determine potential for selection bias due to lack of information regarding the original NETWORK-004 study.

To assess provider decision making and outcomes related to treatment following use of the PrismRA test to inform selection of b/tsDMARDs in individuals with RA, a prospective cohort study was undertaken (Strand et al., 2022, included in the 2022b Hayes report). In the decision-making cohort, 377 individuals met inclusion criteria and were evaluated according to treatment, treatment modifications and physician questionnaire responses. For the clinical outcomes cohort, 212 individuals completing a 12-week follow up visit and a subset of 85 individuals completing a 24-week follow up visit were included; clinical outcomes were evaluated between the subsets based on test results and b/tsDMARD choice. The researchers report that PrismRA test results informed therapy selection in 73.5% of study participants, noting that when these test results were not incorporated into the decision-making process, 62% of participating providers reported that the deviation from the recommendation was due to insurance-related issues. The American College of Rheumatology criteria for ≥ 50% responses (ACR50) at 24 weeks for individuals prescribed medication according to PrismRA test results were 39.6%. Individuals whose test results indicated non-response had significantly improved responses to non-TNFi therapies compared to TNFi therapies (ACR50 34.8% vs 10.3%, p-value = 0.05), indicating that predicted non-responders to TNFi therapies are not nonresponders to other types of RA therapy. The researchers concluded that incorporating PrismRA into patient care could significantly improve RA treatment outcomes, however, the study was nonrandomized and nonblinded and there was no comparison group of impacted individuals that did not undergo testing with the PrismRA test. There was also limited racial diversity (79-84% of population was white) and there were significant differences in characteristics, such as age, between the groups. Lastly, there is potential for bias related to affiliations with the test laboratory. Longer term data is required to evaluate persistence and treatment patterns along with disease burden.

Mellors et al. (2020) reported on the Scipher cross cohort, cross platform study that developed the molecular test to predict decreased/non-response (ACR < 50) to anti-TNF therapies in biologic-naïve RA patients using the Human Interactome model; 39 RA-associated SNPs were evaluated. Data taken from two cohorts collected from the CERTAIN trial (n = 58/patient discovery cohort and n = 143/training cohort) were evaluated to produce a drug biomarker panel; laboratory studies included CBC, C-reactive protein, rheumatoid factor titer and anti-citrullinated protein. A validation cohort (n = 175) was matched to the training cohort for response rate, age and gender and all validation patients from the CERTAIN study had a clinical disease activity index >10. Results revealed that the biomarker panel identified non-responders with an 89.8% PPV and 86.8% specificity (OR 6.57%). A limitation of this study is that the researchers did not have a single platform or single cohort to analyze. The authors concluded that development and validation of such algorithms to predict drug non-responsiveness shows promise for advancing RA precision medicine treatment and for other complex autoimmune conditions where patients demonstrate inadequate response to therapeutics.

Bergman et al. 2020 developed a decision-analytic model to examine two treatment strategies to evaluate the clinical and economic outcomes of PrismRA® for the first 12 months following initial biologic treatment. They observed clinical decision-making from 175 patients enrolled in the CERTAIN study who received anti-TNF after failing to demonstrate response to conventional synthetic DMARD and modeled clinical decision-making for the same cohort using PrismRA®. In total, 69.7% of patients failed to reach goal of ACR50 in response to anti-TNF treatment. A PrismRA® score of ≥ 11.8 was used to identify patients with a high or very high likelihood or poor/non-response to an anti-TNF treatment. Sixty-eight subjects were predicted to be poor responders: 61 were correctly predicted; 7 were misclassified as they did reach ACR50. With the first treatment strategy, 70% of subjects did not reach ACR50 within 6 months. Subsequently, these subjects received a second-line treatment- either a second anti-TNF treatment (60%) or an alternate treatment (40%); these subjects demonstrated a 20% ACR50 response within 12 months. Subjects who reached ACR50 in the first 6 months stayed on therapy for the entire 12 months. Forty-four percent of patients in the 175-subject cohort were predicted to have achieved ACR50 within the first 12 months of treatment. With the second strategy using PrismRA®, the 68 subjects who were poor responders were assigned to another treatment therapy; 27 reached ACR50 in the first 6 months and the other 107 subjects were prescribed an anti-TNF treatment. Of 107 responders, 61 did not reach ACR50 and were given another mechanism of action as a second-line therapy; 16/61 then achieved ACR50. Therefore, 57% of subjects from the 175-patient cohort were predicted to reach ACR50 within the first 12 months of treatment. The researchers listed multiple limitations for this study including the lack of sensitivity analysis and the assumption that health care providers will follow with full adherence the PrismRA® test results. The authors concluded that precision medicine and biomarker-driven treatment are a necessary step toward advancing clinical effectiveness and cost-saving for all medications in addition to RA patient treatment.

Johnson and Weinblatt (2018) introduced the PrismRA® test for Scipher Medicine stating that it predicts non-response to all anti-TNF treatments including Humira, Enbrel and Remicade prior to drug prescription. Scipher Medicine reported that preliminary performance suggests a negative predictive value (NPV) of 92% and a true negative rate (TNR) of 50%. Validation of the predictive accuracy of PrismRA® in a clinical trial is ongoing. Scipher is in communication with rheumatologists and payers to determine optimal clinical endpoints. Once the end points are determined from the trial, PrismRA® will be offered commercially as a CAP-proficient, CLIA-certified lab. PrismRA® will allow more RA patients to achieve good response/remission (ACR50) resulting in improved patient outcome and significant cost savings according to the authors.

Other Pharmacogenetic Multi-Gene Panel Testing

The evidence for use of PGx multi-gene panel testing to guide individualized therapies for indications such as multimorbidity, polypharmacy, attention deficit/hyperactivity disorder (ADHD), psychotic disorders and for general use with medication prescription is insufficient at this time.

In a 2022 systematic review, O'Shea et al. sought to establish the efficacy of multi-gene, multi-disease and multi-drug PGx interventions in adults with multiple morbidities and/or prescription polypharmacy in healthcare settings and to inform enactment of PGx-guided treatments in practice. The review included 12 studies assessing multi-medicine PGx in individuals with multiple morbidities or polypharmacy that reported on relevant core outcomes. Studies varied in design and quality; six non-comparative studies, three observational studies and three RCTs were included. Only a narrative analysis was performed due to high levels of heterogeneity in the evidence reviewed, so the results can provide only a high-level representation of the impact of PGx testing in multimorbidity and/or polypharmacy. Ultimately, the authors concluded that due to the lack of methodologically robust, high-quality studies with appropriate long-term follow-up, no generalized conclusions regarding benefits for patients or health systems could be made based on this review. They assert that there is promise for individualizing therapies through PGx guidance, but further high-quality studies across differing patient care settings are required to establish efficacy.

For use of PGx testing to assist with medication or dose selection for individuals diagnosed with ADHD, a Hayes Clinical Utility Evaluation (2022a, updated 2023) found insufficient evidence to support clinical utility/improved clinical outcomes. The authors suggest that future studies to evaluate PGx testing assessing effects on ADHD symptoms, medication side effects and other clinical outcomes are needed.

A systematic review and meta-analysis evaluating the current evidence regarding impact of PGx testing on hospital admissions and whether PGx leads to changes in medication was published by David et al. in 2021. Five studies focused on hospitalization and five studies focused on medication change were identified for evaluation. Meta-analysis found that changes in medication occurred significantly more often in the PGx test arm in four of five studies, and all-cause hospitalization occurred significantly less often in the PGx test arm than in treatment-as-usual (TAU) comparator. The researchers share their belief that these results show proof of concept for use of PGx in prescribing that may lead to patient benefit but point out the evidence gaps that exist related to introduction of PGx into health care systems. They feel

their analysis will assist with identifying areas where further research is needed, including investigation of the perspectives of health care providers and patients to assist in design of patient-centric PGx-guided care.

A Hayes Clinical Utility Evaluation (2021a) addressed the use of PGx testing to inform selection or dosing of medication for individuals with selected mental health conditions including anxiety disorder, bipolar disorder, depression, schizophrenia spectrum or other psychotic disorder. Hayes concluded that there was lack of consistency in study results and the role of PGx-guided prescribing to improve outcomes in the select mental health disorders detailed above remains uncertain.

Aranz et al. (2019) analyzed the benefits of PGx testing of CYP variants for the purpose of adjusting clinical doses of frequently used antipsychotics. Results for patients using PGx information (PI) were compared with patients who were treated as usual. Two hundred and ninety patients from three hospitals in Spain with schizophrenia/schizoaffective/delusional disorders requiring medication were randomized for PI (PharmG+ arm) or treatment as usual (PharmG-arm). Recruitment began when initial treatment was started or when a change in antipsychotic treatment was deemed necessary. One hundred twenty-three patients were genotyped using the commercial Brainchip PGx test; 167 patients were treated as usual by adhering to standard clinical practices. Positive and negative scale for schizophrenia (PANSS) and UKU- side effect rating scores were gathered at the beginning and again at 12 weeks to assess effectiveness of treatment. PANSS/UKU values were rated by clinical psychiatrists who were also blinded to the patient's arm. No statistically significant differences were observed in side effects between the two groups. When patients had their dose adjusted based on PharmG+ data (n = 123), there was a larger reduction in side effects than those in the PharmG- group but this was not statistically significant (p > 0.05). PharmG+ patients who were carriers of CYP2D6 UMs (ultra-metabolizer) or PMs (poor metabolizer) variants showed statistically larger improvements in global, psychic and other UKU side effects as compared to PharmG- (p = 0.02, p = 0.05 and p = 0.01, respectively). The authors concluded that PGx interventions may enhance safety by decreasing the side effects of antipsychotic treatments, however the study did not find evidence of greater efficacy. The researchers also concluded that the results were not unexpected as treatment success may be influenced by more than genomic profiles and describe the effect of drug metabolism as a key factor.

Borobia et al. (2018) reported on the implementation of a PGx program in 2014 at La Paz University Hospital (LPUH) in Madrid. LPUH is a 1,308-bed tertiary-care teaching hospital of the Spanish NHS serving ~600,000 people. The goal of the study was to implement PGx into clinical practice and evolve from an ad hoc strategy linked to a prescription to a proactive practice, where genetic information would be obtained prior to a prescription in at risk populations. The targeted populations were at risk for inflammatory bowel disease, psoriasis, transplant patients, high cardiovascular disease risk, leukemia, and colorectal cancer. The authors utilized a 180 SNP panel (PharmArray) for testing. Ordering providers would submit a recommendation and request for testing to a centralized Pharmacogenetic Testing Unit who would evaluate the request based on patient demographics, if the requested marker fell into one of three categories. Category A was for preemptive screening of an actionable marker, such as HLA-B5701 for abacavir response. Category B was for drugs with a well-defined protocol for treating certain diseases, such as TPMT for thiopurine response in the treatment of inflammatory bowel disease. Category C was for drugs without a well-defined protocol. In this situation, the PGx unit would evaluate the therapeutic issue and determine if a PGx test would be clinically useful. From January 2014 through December 2016, the Pharmacogenetic Testing Unit received 2,539 consultation requests. The most common tests were TPMT and MTHFR. There were 1,939 requests for treatment selection with well-defined protocols, and 711 for drugs with PGx treatment recommendations for certain diseases or with poorly defined recommendations. Of these, 600 were found appropriate and approved, and 32% had a molecular profile that impacted the drug. In this sub-group, 58% (107) had a dose adjustment as a result. The program's total cost was estimated at 216 € (\$254) per patient, and 91% of physicians surveyed said they would now use PGx regularly.

O'Donnell et al. (2014) implemented a PGx testing program, The 1200 Patients Project, at the University of Chicago to adult patients who were regularly taking at least one prescription drug, but not more than six. Patients could be referred by a care provider or self-referred to the program. After participating in an informed consent process, patients were tested for PGx variants using a commercially available multi-gene PGx testing panel (Sequenom ADME). Overall, 868 patients that completed PGx testing had 2279 patient encounters that were reviewed. Four medical specialties and seventeen providers represented all clinic visits: executive health, nephrology, hepatology, and pulmonology. The most prevalent medications included aspirin, atorvastatin, hydrochlorothiazide,, lisinopril, and amlodipine. Of all medications on active patient drug lists, 34% had associated alerts (n = 2869) that included green (21%), cautionary yellow (13%) and high-risk red (0.5%). The remaining medications had no actionable PGx information. Of the 2869 alerts provided, green alerts were viewed 40% of the time, and 4% had medication changes documented. Yellow alerts were viewed 66% of the time, and 5% had medication changes documented. Red alerts were viewed 89% of the time, and 24% had medication changes documented. Nearly half of all medication changes were for omeprazole and atorvastatin. Simvastatin and rabeprazole had the highest overall percentage of changes influenced by the PGx test results. The authors note that limitations to this

study include the small number of providers involved and the modest response to actionable alerts, with only 60 medication changes out of 405 possibly actionable red and yellow alerts. In addition, the providers included in the study were also co-investigators which may highlight a bias toward PGx, and they knew their behavior was being examined, which may have altered their choices from what they would have done if they had not known their choices were being monitored.

Clinical Practice Guidelines American College of Rheumatology (ACR)

In a 2021 ACR guideline (Fraenkel et al.) the PrismRA test is not specifically discussed, however the guideline does reference the following as a "key clinical question requiring further research": Do clinical or biologic markers predict a differential response to DMARDs? They note that the answer to this question is an important gap in knowledge related to management of RA.

ACR has identified eleven measures of disease activity for Rheumatoid Arthritis as a minimum standard for regular use in clinical settings: Disease Activity Score (DAS), Routine Assessment of Patient Index Data 3 (RAPID3), Routine Assessment of Patient Index Data 5 (RAPID 5), Clinical Disease Activity Index (CDAI), Disease Activity Score with 28 joints (DAS28-ESR/CP), Patient Derived DAS28, Hospital Universitario La Princesa Index (HUPI), Multibiomarker Disease Activity Score (MBDA score, VectraDA), Rheumatoid Arthritis Disease Activity Index (RADAI), Rheumatoid Arthritis Disease Activity Index D (RADAI-5), Simplified Disease Activity Index (SDAI). (England et al., 2019)

Singh et al. (2016) recommended that the primary goal for RA treatment should be low disease activity and/or clinical remission with a goal of ACR50 or 70 achievement. With moderate to high activity despite DMARD monotherapy, combination DMARD or a TNF1 or non-TNF biologic is preferred over DMARD monotherapy. The guideline states that the use of non-TNF biologics has been proven effective in RA treatment.

Clinical Pharmacogenetics Implementation Consortium (CPIC®)

CPIC® is an international organization with membership including clinicians, scientists, laboratorians, and other PGx experts with the purpose of facilitating the use of PGx test results for patient care. CPIC's goal is to address the barrier caused by difficulty translating genetic laboratory test results into actionable prescribing decisions for applicable drugs by creating freely available, peer-reviewed, evidence-based, and updatable gene/drug clinical practice guidelines. CPIC started as a shared project between the Pharmacogenetics Research Network (PGRN) and the Pharmacogenomics Knowledge Base (PharmGKB) in 2009. CPIC guidelines are indexed in PubMed as clinical guidelines, endorsed by the American Society of Health-System Pharmacists (ASHP) and the American Society for Clinical Pharmacology and Therapeutics (ASCPT), and are referenced in ClinGen and PharmGKB.

In an updated guideline (Bousman et al., 2023) CPIC expanded on their existing guideline for *CYP2D6* and *CYP2CD19* genotypes and selective serotonin reuptake inhibitor (SSRI) antidepressant dosing and summarizes the effect of *CYP2D6*, *CYP2C19*, *CYP2B6*, *SLC6A4* and *HTR2A* genotypes on the dosing, efficacy and tolerability of antidepressant medications. They state that *CYP2D6*, *CYP2C19*, and/or *CYP2B6* genotype results can be beneficial for detecting individuals who are at a higher risk either adverse drug reactions or inadequate response to SSRI therapy. Risks, including the potential to miss the identification of rare or new variations that are usually not tested on current platforms, have been identified. In such cases, the actual phenotype may be different from the predicted phenotype. Other factors, such as age, diet, comorbidities, smoking, pregnancy, concomitant medications and epigenetic variation may also apply. CPIC did not provide recommendations for *HTR2A* and *SLC6A4* because the evidence supporting an association between these genotypes and SSRI antidepressants is mixed/insufficient to support clinical validity and utility at this time (CPIC level C: no recommendation).

In a recent CPIC guideline, Crews et al. (2021) summarized the evidence regarding *CYP2D6*, *OPRM1* and *COMT* and their impact on opioid analgesia as well as adverse events and provided therapeutic recommendations for *CYP2D6* genotype result usage related to prescription of codeine and tramadol. There is substantial evidence that has linked *CYP2D6* to variations in effect and toxicity of codeine and tramadol, but insufficient evidence to support use of this genotyping for prescribing hydrocodone, oxycodone or methadone. *OPRM1* variants have inconsistently been shown to alter dose requirements for postoperative pain in some opioids, but there is insufficient evidence to clearly demonstrate altered analgesic response to these variants. The most highly studied *COMT* variant is rs4680, but there is no evidence to support association of this variant with adverse effects of opioids and there is mixed evidence for association between *COMT* rs4680 genotype and dosing requirements. For all other variants of *COMT*, there is mixed evidence regarding association between *COMT* and analgesia, opioid dosing and adverse events. Overall, there is limited or weak data for use of *CYP2D6* genotyping for hydrocodone, oxycodone and methadone and for *OPRM1* and *COMT1* in clinical use.

European League Against Rheumatism (EULAR)

Smolen et al. (2022) updated the EULAR recommendations for the management of rheumatoid arthritis based on evidence from three systematic literature searches on the safety and efficacy of DMARDs and glucocorticoids (GCs). The EULAR task force provided five principles and eleven recommendations regarding the use of conventional synthetic (cs) DMARDs, GCs, biological DMARDs and targeted synthetic DMARDs. Neither the use of molecular signature response classifiers or PrismRA were discussed, but one of the items on the EULAR research agenda is identification of new biomarkers to help stratify individuals with RA and predict therapeutic response or lack of response.

International Society of Psychiatric Genetics (ISPG)

In 2021, a group of experts assembled by the ISPG published a narrative review of PGx evidence, product labeling and existing prescribing guidelines for psychotropic medications and the main considerations and concerns related to psychiatric use of PGx testing (Bousman et al., 2021). The group determined that current published literature, product labeling and prescribing guidelines support the use of PGx testing for *CYP2D6*, and *CYP2C19* to inform selection of medication and dosing of multiple common anti-depressant and anti-psychotic medications. They feel the evidence also supports additional testing for human leukocyte antigen genes with use of mood stabilizers including carbamazepine, oxcarbazepine and phenytoin. Screening for variants in *POLG*, *OTC*, and *CSP1* is recommended for valproate screening when there is suspicion of a mitochondrial disorder or urea cycle disorder. Noted in this review is the fact that PGx testing is not regulated at present and there are many available tests that include genes with little or no support for clinical implementation which could lead to inappropriate medication selection and dosing. Large PGx studies are currently underway, with the expectation that results will lead to further evolution of evidence supporting the use of PGx testing and removal of barriers for appropriate testing. Overall, the group is optimistic regarding the current direction of research and innovation in the field of PGx testing and believes this testing will ultimately become an important tool for use in individuals with psychiatric disorders.

ISPG updated their statement on genetic testing in 2019. Their recommendation regarding PGx testing is as follows: "Pharmacogenetic testing should be viewed as a decision-support tool to assist in thoughtful implementation of good clinical care. We recommend HLA-A and HLA-B testing prior to use of carbamazepine and oxcarbazepine, in alignment with regulatory agencies and expert groups. Evidence to support widespread use of other pharmacogenetic tests at this time is still inconclusive, but when pharmacogenetic testing results are already available, providers are encouraged to integrate this information into their medication selection and dosing decisions. Genetic information for CYP2C19 and CYP2D6 would likely be most beneficial for individuals who have experienced an inadequate response or adverse reaction to a previous antidepressant or antipsychotic trial."

National Comprehensive Cancer Network (NCCN)

NCCN guidelines for adult cancer pain include a section on Principles of PGx, indicating that PGx testing may be considered before initiation or during treatment of pain when concerns of toxicity or lack of analgesic response are present or suspected.

U.S. Food and Drug Administration (FDA)

This section is to be used for informational purposes only. FDA approval alone is not a basis for coverage.

Laboratories that perform genetic tests are regulated under the Clinical Laboratory Improvement Amendments (CLIA) Act of 1988. More information is available at:

https://www.fda.gov/medicaldevices/deviceregulationandguidance/ivdregulatoryassistance/ucm124105.htm. (Accessed August 15, 2023)

References

Aboelbaha S, Zolezzi M, Elewa H. Effect of pharmacogenetic-based decision support tools in improving depression outcomes: A systematic review. Neuropsychiatr Dis Treat. 2021 Jul 21;17:2397-2419.

Agulló L, Aguado I, Muriel J, et al. Pharmacogenetic guided opioid therapy improves chronic pain outcomes and comorbid mental health: a randomized, double-blind, controlled study. Int J Mol Sci. 2023 Jun 28;24(13):10754.

Aranz M, Gonzalez-Rodriguez A, Perez-Blanco J, et al. A pharmacogenetic intervention for the improvement of the safety profile of antipsychotic treatments. Transl Psychiatry. 2019; 9:177.

Bergman MJ, Kivitz AJ, Pappas DA, et al. Clinical utility and cost savings in predicting inadequate response to anti-TNF therapies in rheumatoid arthritis. Rheumatol Ther. 2020 Dec;7(4):775-792.

Billings J, Racsa PN, Bordenave K, et al. The impact of real-world cardiovascular-related pharmacogenetic testing in an insured population. Int J Clin Pract. 2018 Jun;72(6):e13088.

Borobia AM, Dapia I, Tong HY, et al. Clinical implementation of pharmacogenetic testing in a hospital of the Spanish National Health System: Strategy and experience over 3 years. Clin Transl Sci. 2018 Mar;11(2):189-199.

Bousman CA, Arandjelovic K, Mancuso SG, et al. Pharmacogenetic tests and depressive symptom remission: a metaanalysis of randomized controlled trials. Pharmacogenomics. 2019 Jan;20(1):37-47.

Bousman CA, Bengesser SA, Aitchison KJ, et al. Review and consensus on pharmacogenomic testing in psychiatry. Pharmacopsychiatry. 2021 Jan;54(1):5-17.

Bousman CA, Stevenson JM, Ramsey LB, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline for CYP2D6, CYP2C19, CYP2B6, SLC6A4, and HTR2A genotypes and serotonin reuptake inhibitor antidepressants. Clin Pharmacol Ther. 2023 Jul;114(1):51-68.

Bradley P, Shiekh M, Mehra V, at al. Improved efficacy with targeted pharmacogenetic-guided treatment of patients with depression and anxiety: a randomized clinical trial demonstrating clinical utility. J Psychiatr Res. 2018 Jan;96:100-107.

Brown L, Vranjkovic O, Li J, et al. The clinical utility of combinatorial pharmacogenomics testing for patients with depression: a meta-analysis. Pharmacogenomics. 2020 Jun; 21(8):559-569.

Clinical Pharmacogenetics Implementation Consortium (CPIC®). Available at: <u>CPIC (cpicpgx.org)</u>. Accessed August 15, 2023.

Crews KR, Monte AA, Huddart R, et al. Clinical Pharmacogenetics Implementation Consortium guideline for CYP2D6, OPRM1, and COMT genotypes and select opioid therapy. Clin Pharmacol Ther. 2021 Oct;110(4):888-896.

Curtis JR, Strand V, Golombek S, et al. Patient outcomes improve when a molecular signature test guides treatment decision-making in rheumatoid arthritis. Expert Rev Mol Diagn. 2022 Nov 3:1-10.

David V, Fylan B, Bryant E, et al. An analysis of pharmacogenomic-guided pathways and their effect on medication changes and hospital admissions: a systematic review and meta-analysis. Front Genet. 2021 Jul 30;12:698148.

England BR, Tiong BK, Bergman MJ, et al. 2019 update of the American College of Rheumatology recommended rheumatoid arthritis disease activity measures. Arthritis Care Res (Hoboken). 2019 Dec;71(12):1540-1555.

Fraenkel L, Bathon JM, England BR, et al. 2021 American College of Rheumatology guideline for the treatment of rheumatoid arthritis. Arthritis Care Res (Hoboken). 2021 Jul;73(7):924-939.

Greden JF, Parikh SV, Rothschild AJ, et al. Impact of pharmacogenomics on clinical outcomes in major depressive disorder in the GUIDED trial: a large, patient- and rater-blinded, randomized, controlled study. J Psychiatr Res. 2019 Jan 4; 111:59-67.

Hamilton WG, Gargiulo JM, Reynolds TR, et al. Prospective randomized study using pharmacogenetics to customize postoperative pain medication following hip and knee arthroplasty. J Arthroplasty. 2022 Jun;37(6S):S76-S81.

Hayes Inc. Clinical Utility Evaluation. Pharmacogenetic and pharmacogenomic testing for opioid treatment for pain in adults – selected single-gene variants and pharmacogenomic panels. Hayes Inc. December 11, 2019a, updated October 26, 2022.

Hayes Inc. Clinical Utility Evaluation. Pharmacogenetic and pharmacogenomic testing to improve outcomes related to opioid use disorder. Hayes, Inc.; April 27, 2020, updated June 30, 2022.

Hayes Inc. Clinical Utility Evaluation. Pharmacogenetic testing for opioid treatment for pain – OPRM1 and COMT variants. Hayes Inc. December 3, 2019b, updated October 24, 2022.

Hayes Inc. Clinical Utility Evaluation. Pharmacogenetic testing for attention-deficit/hyperactivity disorder treatment. Hayes Inc. January 12, 2022a, updated March 31, 2023.

Hayes Inc. Clinical Utility Evaluation. Pharmacogenomic testing of selected mental health conditions. Hayes, Inc. December 6, 2021a.

Hayes Inc. Molecular Test Assessment. GeneSight Psychotropic (Assurex Health Inc./Myriad Neuroscience). Hayes, Inc. September 10, 2021b, updated October 20, 2022.

Hayes Inc. Molecular Test Assessment. PrismRA (Scipher Medicine). Hayes, Inc. April 22, 2022b, updated June 22, 2023.

International Society of Psychiatric Genetics (ISPG) Genetic Testing Statement. Available at: https://ispg.net/genetic-testing-statement/. Accessed August 15, 2023.

Johnson K, Weinblatt M. Precision medicine in complex disease: use of the PrismRA test to stratify patients for response to anti-TNF therapy in rheumatoid arthritis. 2018 October. Available at: https://www.mydigitalpublication.com/publication/?m=46092&i=547602&p=44&pp=1&ver=html5. August 15, 2023.

Jones A, Rapisardo S, Zhang L, et al. Analytical and clinical validation of an RNA sequencing-based assay for quantitative, accurate evaluation of a molecular signature response classifier in rheumatoid arthritis. Expert Rev Mol Diagn. 2021 Nov;21(11):1235-1243.

Jung J, Tawa EA, Muench C, et al. Genome-wide association study of treatment response to venlafaxine XR in generalized anxiety disorder. Psychiatry Res. 2017 Aug; 254:8-11.

MedlinePlus [Internet]. Bethesda (MD): National Library of Medicine (US); [updated 2020 Jun 24]. Pharmacogenetic Tests; [updated 2023 Feb 27]. Available at: https://medlineplus.gov/lab-tests/pharmacogenetic-tests/. Accessed August 15, 2023.

Mellors TW, Withers JW, Ameli A, et al. Clinical validation of a blood-based predictive test for stratification of response to tumor necrosis factor inhibitor therapies in rheumatoid arthritis patients. Netw Syst Med. 2020 Jul;3(1):1-14. Available at: https://doi.org/10.1089/nsm.2020.0007. Accessed August 15, 2023.

Menchón JM, Espadaler J, Tuson M, et al. Patient characteristics driving clinical utility in psychiatric pharmacogenetics: a reanalysis from the AB-GEN multicentric trial. J Neural Transm (Vienna). 2019 Jan;126(1):95-99.

Muriel J, Margarit C, Barrachina J, et al. Pharmacogenetics and prediction of adverse events in prescription opioid use disorder patients. Basic Clin Pharmacol Toxicol. 2019 Apr;124(4):439-448.

National Comprehensive Cancer Network (NCCN). Clinical Practice Guidelines in Oncology. Adult cancer pain Version 2.2023.

National Cancer Institute Dictionary of Genetics Terms. Multigene test. Available at: https://www.cancer.gov/publications/dictionaries/genetics-dictionary/def/multigene-test. Accessed August 15, 2023.

O'Donnell PH, Danahey K, Jacobs M, et al. Adoption of a clinical pharmacogenomics implementation program during outpatient care—initial results of The University of Chicago "1200 Patients Project." American Journal of Medical Genetics Part C, Seminars in Medical Genetics. 2014;166(1):68-75.

Ontario Health (Quality). Multi-gene pharmacogenomic testing that includes decision-support tools to guide medication selection for major depression: a health technology assessment. Ont Health Technol Assess Ser. 2021 Aug 12;21(13):1-214.

O'Shea J, Ledwidge M, Gallagher J, et al. Pharmacogenetic interventions to improve outcomes in patients with multimorbidity or prescribed polypharmacy: a systematic review. Pharmacogenomics J. 2022 Mar;22(2):89-99.

Oslin DW, Lynch KG, Shih MC, et al.; PRIME Care Research Group; Aslam M, Batki SL, Bjork JM, Blow FC, et al. Effect of pharmacogenomic testing for drug-gene interactions on medication selection and remission of symptoms in major depressive disorder: The PRIME Care Randomized Clinical Trial. JAMA. 2022 Jul 12;328(2):151-161.

Pérez V, Salavert A, Espadaler J, et al. Efficacy of prospective pharmacogenetic testing in the treatment of major depressive disorder: results of a randomized, double-blind clinical trial. BMC Psychiatry. 2017 Jul 14;17(1):250.

Perlis RH, Mehta R, Edwards AM, et al. Pharmacogenetic testing among patients with mood and anxiety disorders is associated with decreased utilization and cost: a propensity-score matched study. Depress Anxiety. 2018 Oct;35(10):946-

Ratner L, Zhu J', Gower MN, et al. Pharmacogenomic prescribing opportunities in percutaneous coronary intervention and bone marrow transplant patients. Pharmacogenomics. 2022 Feb;23(3):183-194.

Rodriguez Cairoli F, Appiani F, Sambade JM, et al. Efficacy and safety of opioid therapy guided by pharmacogenetics: a systematic review. Pharmacogenomics. 2021 Jun;22(9):573-586.

Rosenblat JD, Lee Y, McIntyre RS. The effect of pharmacogenomic testing on response and remission rates in the acute treatment of major depressive disorder: a meta-analysis. J Affect Disord. 2018 Dec 1;241:484-491.

Rouby N, Alrwisan A, Langaee T, et al. Clinical utility of pharmacogene panel-based testing in patients undergoing percutaneous coronary intervention. Clin Transl Sci. 2020 May; 13(3): 473-481.

Sági JC, Egyed B, Kelemen A, et al. Possible roles of genetic variations in chemotherapy related cardiotoxicity in pediatric acute lymphoblastic leukemia and osteosarcoma. BMC Cancer. 2018;18(1):704. Published 2018 Jul 3.

Scipher Medicine Corporation. PrismRA. 2022. Available at: https://www.prismra.com. Accessed August 15, 2023.

Singh JA, Saag KG, Bridges SL Jr, et al. American College of Rheumatology. 2015 American College of Rheumatology guideline for the treatment of rheumatoid arthritis. Arthritis Care Res (Hoboken). 2016 Jan;68(1):1-25.

Smolen JS, Landewé RBM, Bergstra SA, et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2022 update. Ann Rheum Dis. 2023 Jan;82(1):3-18.

Strand V, Cohen SB, Curtis JR, et al. Clinical utility of therapy selection informed by predicted nonresponse to tumor necrosis factor- α inhibitors: an analysis from the Study to Accelerate Information of Molecular Signatures (AIMS) in rheumatoid arthritis. Expert Rev Mol Diagn. 2022 Jan;22(1):101-109.

Tansey KE, Guipponi M, Hu X, et al. Contribution of common genetic variants to antidepressant response. Biol Psychiatry. 2013 Apr 1;73(7):679-82.

Tiwari AK, Zai CC, Altar CA, et al. Clinical utility of combinatorial pharmacogenomic testing in depression: A Canadian patient- and rater-blinded, randomized, controlled trial. Transl Psychiatry. 2022 Mar 14;12(1):101.

Vos CF, Ter Hark SE, Schellekens AFA, et al. Effectiveness of genotype-specific tricyclic antidepressant dosing in patients with major depressive disorder: a randomized clinical trial. JAMA Netw Open. 2023 May 1;6(5):e2312443.

Wang X, Wang C, Zhang Y, et al. Effect of pharmacogenomics testing guiding on clinical outcomes in major depressive disorder: a systematic review and meta-analysis of RCT. BMC Psychiatry. 2023 May 12;23(1):334.

Yang X, Li G, Guan M, Bapat A, et al. Potential gene association studies of chemotherapy-induced cardiotoxicity: A systematic review and meta-analysis. Front Cardiovasc Med. 2021 Jun 4;8:651269.

Zobdeh F, Eremenko II, Akan MA, et al. Pharmacogenetics and pain treatment with a focus on non-steroidal anti-inflammatory drugs (NSAIDs) and antidepressants: A Systematic Review. Pharmaceutics. 2022 Jun 1;14(6):1190.

Guideline History/Revision Information

Date	Summary of Changes
07/01/2024	Medical Records Documentation Used for Reviews (previously titled Documentation Requirements)
	 Replaced list of Required Clinical Information with instruction to refer to the protocol titled <u>Medical Records Documentation Used for Reviews</u> Applicable Codes
	 Updated list of applicable CPT codes to reflect quarterly edits; added 0456U, 0460U, and 0461U
	Supporting Information
	 Archived previous policy version MMG157.P

Instructions for Use

This Medical Management Guideline provides assistance in interpreting UnitedHealthcare standard benefit plans. When deciding coverage, the member specific benefit plan document must be referenced as the terms of the member specific benefit plan may differ from the standard plan. In the event of a conflict, the member specific benefit plan document governs. Before using this guideline, please check the member specific benefit plan document and any applicable federal or state mandates. UnitedHealthcare reserves the right to modify its Policies and Guidelines as necessary. This Medical Management Guideline is provided for informational purposes. It does not constitute medical advice.

UnitedHealthcare may also use tools developed by third parties, such as the InterQual® criteria, to assist us in administering health benefits. UnitedHealthcare West Medical Management Guidelines are intended to be used in connection with the independent professional medical judgment of a qualified health care provider and do not constitute the practice of medicine or medical advice.

Member benefit coverage and limitations may vary based on the member's benefit plan Health Plan coverage provided by or through UnitedHealthcare of California, UnitedHealthcare Benefits Plan of California, UnitedHealthcare of Oklahoma, Inc., UnitedHealthcare of Oregon, Inc., UnitedHealthcare Benefits of Texas, Inc., or UnitedHealthcare of Washington, Inc.